
Intoduction to UNIX
version 0.1

Last generated: February 23, 2020

This work is licensed under a Creative
Commons Attribution-ShareAlike 4.0
International License .

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/


Table of Contents
Getting Started

Introduction .............................................................................................................................. 5

Command Line......................................................................................................................... 6

UNIX and Unix-Like File Systems ............................................................................................ 7

Shells (bash and csh) ............................................................................................................... 9

Environment Variables............................................................................................................ 12

Housekeeping ........................................................................................................................ 14

Regular Expressions............................................................................................................... 16

Connecting to Computers (ssh and VPN)
ssh.......................................................................................................................................... 17

ssh with Graphical Forwarding (X11)...................................................................................... 18

passwd: Changing your Password ........................................................................................ 19

exit.......................................................................................................................................... 20

Folders: cd, mkdir, pwd, and more!
cd ........................................................................................................................................... 21

mkdir ...................................................................................................................................... 23

ls (and an intro to permissions and flags)............................................................................... 24

pwd......................................................................................................................................... 26

tree ......................................................................................................................................... 27

hostname................................................................................................................................ 30

whoami ................................................................................................................................... 31

which ...................................................................................................................................... 32

Copying and Removing Files
mv........................................................................................................................................... 33

cp ........................................................................................................................................... 34

scp.......................................................................................................................................... 35

rsync....................................................................................................................................... 36

sftp ......................................................................................................................................... 37

rm ........................................................................................................................................... 38

Compressing and Expanding Files
gzip and gunzip ...................................................................................................................... 39

Intoduction to UNIX User Guide PDF last generated: February 23, 2020

youremail@domain.com i



bzip2 and bunzip2.................................................................................................................. 40

zip and unzip .......................................................................................................................... 41

tar ........................................................................................................................................... 42

Processes
top .......................................................................................................................................... 43

ps............................................................................................................................................ 44

kill ........................................................................................................................................... 45

watch...................................................................................................................................... 46

Cntrl+C: Abort Abort Abort .................................................................................................... 47

Cntrl+Z: Background Jobs..................................................................................................... 48

nvidia-smi ............................................................................................................................... 49

du ........................................................................................................................................... 52

sleep....................................................................................................................................... 53

crontab: a Scheduling Tool .................................................................................................... 54

Creating, Reading, and Editing Files
vi editor................................................................................................................................... 57

Searching Files ....................................................................................................................... 58

Search and Replace All .......................................................................................................... 59

Commenting Out .................................................................................................................... 60

less: Safe Viewing .................................................................................................................. 61

more: Minimalist Safe Viewing ............................................................................................... 62

touch ...................................................................................................................................... 63

Printing and Reorganizing Files
echo........................................................................................................................................ 64

> and >>: redirecting output .................................................................................................. 65

cat (and tac)............................................................................................................................ 66

awk ......................................................................................................................................... 67

diff .......................................................................................................................................... 69

grep ........................................................................................................................................ 70

paste....................................................................................................................................... 71

sort ......................................................................................................................................... 72

split ......................................................................................................................................... 74

sed.......................................................................................................................................... 75

Images
convert ................................................................................................................................... 78

Intoduction to UNIX User Guide PDF last generated: February 23, 2020

youremail@domain.com ii



eog ......................................................................................................................................... 79

evince ..................................................................................................................................... 80

Keyboard Shortcuts and Special Characters
Cntrl+A: Begin Again .............................................................................................................. 81

Cntrl+L: CLEAR! ..................................................................................................................... 82

Cntrl+R: History's Pal ............................................................................................................. 83

Cntrl+U: Clear the Line!.......................................................................................................... 84

Tab: the Autofill Key ............................................................................................................... 85

The Pipe ................................................................................................................................. 86

*: Wildcards ............................................................................................................................ 87

Other Helpful Things
date, cal, and time.................................................................................................................. 88

head........................................................................................................................................ 90

tail ........................................................................................................................................... 91

file ........................................................................................................................................... 92

man Pages ............................................................................................................................. 93

find.......................................................................................................................................... 94

locate...................................................................................................................................... 95

wc........................................................................................................................................... 96

history..................................................................................................................................... 97

ln: Symbolic Links .................................................................................................................. 98

Aliases: for Efficiency and Laziness ....................................................................................... 99

Opening Additional Terminals from Terminal ....................................................................... 100

Quick Intro to Computer Admin-ing
sudo : Administrator Rights and Installations ...................................................................... 101

free ....................................................................................................................................... 103

ifconfig.................................................................................................................................. 104

Installing Packages with a Package Manager...................................................................... 105

Fully Removing Packages (and Kernels) with a Package Manager ..................................... 107

Groups (a supplement to chmod) ........................................................................................ 108

last........................................................................................................................................ 109

lsof........................................................................................................................................ 110

mail ....................................................................................................................................... 111

mount ................................................................................................................................... 112

ping....................................................................................................................................... 115

Intoduction to UNIX User Guide PDF last generated: February 23, 2020

youremail@domain.com iii



reboot ................................................................................................................................... 116

su: Switch User .................................................................................................................... 117

uptime .................................................................................................................................. 118

useradd ................................................................................................................................ 119

users..................................................................................................................................... 120

w........................................................................................................................................... 121

Running Jobs
Running Jobs Locally ........................................................................................................... 122

Using PBS Schedulers ......................................................................................................... 126

Using SLURM Schedulers.................................................................................................... 135

Using XSEDE's Comet ......................................................................................................... 139

Fun Commands
finger (and chfn).................................................................................................................... 144

mesg..................................................................................................................................... 145

wall ....................................................................................................................................... 146

who and write....................................................................................................................... 147

Intoduction to UNIX User Guide PDF last generated: February 23, 2020

youremail@domain.com iv



Introduction
This is a list of commands and their contexts for getting started with using Unix.
It’s probably going to be somewhere between nothing and StackOverflow in terms
of explanation. The odds are high that if you have a very specific thing that you
want to do, that someone on the internet has answered something similar to it on
StackOverflow .

 PDF Download

Introduction PDF last generated: February 23, 2020

Intoduction to UNIX User Guide Page 5

https://stackoverflow.com/
http://localhost:4010/UNIXguide-pdf/pdf/UNIXguide.pdf
http://localhost:4010/UNIXguide-pdf/pdf/UNIXguide.pdf


Command Line
First, you’re going to need a way to access the command line. If you’re on Linux
or Mac machine, this is easy! Both have applications that come with your
computer named Terminal. If you’re on a Windows device, you’ll need to
download a Terminal emulator, such as PuTTY or MobaXterm . After opening
Terminal, you’ll probably feel like a hacker. That’s cool. The feeling takes a long
time to go away.

 Note: When using the command line, there is always who you are and
which folder you’re in to the left of where you type. This bit ends with a $,
which will be shown in every command line example in this guide.

Command Line PDF last generated: February 23, 2020

Intoduction to UNIX User Guide Page 6

https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html
https://mobaxterm.mobatek.net/


UNIX and Unix-Like File Systems
UNIX is a family of computer operating systems that meet a set of criteria (some
examples include Apple’s macOS and Oracle Solaris). Unix-like systems are
computer systems that behave similarly to UNIX, without necessarily meeting the
Single UNIX Specification. Linux operating systems are Unix-like systems, and
may be known as GNU/Linux, due to being a GNU derivative. Linux distributions
(i.e. CentOS, Ubuntu, Debian, Fedora, Red Hat, Mint… there are a lot) are free and
open-source, and all follow a similar layout in how they are set-up.

Root Directory
The root directory is the penultimate directory on a Unix system, and can be
accessed through cd / . The root directory is set up in a way so that only the
administrator(s) (known as the “root user(s)” can make changes in this directory.
This is a safety issue–just messing around with any old file or directory without
knowing the purpose can royally screw up the system, since these files describe
the operating system itself.

Bin Directories
The bin directories usually hold programs. The root bin directory can be accessed
through cd /bin . If you do that in a Terminal, and then use the ls (page 24)
command, you will list a bunch of different programs. You’ll even find stuff like ls
(page 24)! That’s because commands are programs that are accessed to do their
intended purpose. Additional bin directories are:

/bin/
/usr/bin/
/usr/local/bin/
/sbin/

Home Directory
The home directory is your safe place. It’s essentially your owner folder on the
computer, which is where you’ll create all of your personal files and folders from.
You can access your home directory at any time using the cd (page 21) command.
The home directory typically has a path of /home/username/ which is equal to
~/ to the computer. Hence, anytime you’re away from the confines of your own

UNIX and Unix-Like File Systems PDF last generated: February 23, 2020

Intoduction to UNIX User Guide Page 7



home directory (like when copying files between computers), to navigate back to
it, you’ll need to remember the tilde. Home directories are automatically created
when a new user is added to the computer.

Scratch Directory
The scratch directory is usually given the largest disk partition on a computer,
meaning it has the biggest space allocation. While home directory creation is
automatic, scratch directories need to be created by the user. To create your own,
use: $ mkdir /scratch/username .

It is possible that you need to be a root user to create your own personal scratch
directory. If you’re a root user, you can do this with sudo (page 101). If you are
not, then ask an administrator for help.

Graphical User Interface
Remember how I talked about the command line? Well, if you’ve ever used a
computer like a normal person, then you’ve had a nice visual component that
enabled you to never think about the command line before. That visual component
is known as the Graphical User Interface, or GUI. Some programs only function
via a GUI, or perform best through a GUI. That’s why when you’re remotely
connecting to computers, you may encounter times that you need to set up stuff
like graphical forwarding (known as X11). X11 allows you to see the user interface
that you’re remotely accessing on your own screen, and interact with it (albeit
slowly). Using the GUI is likely more intuitive while sitting at the physical computer
(since it’s designed that way), so there are likely a large number of commands that
will be easier through the GUI than the command line (such as copying files
between folders). Those commands become important, however, when you
cannot physically access the computer.

Scratch Directory PDF last generated: February 23, 2020

Intoduction to UNIX User Guide Page 8



Shells (bash and csh)
Shells are command-line interpreters. They are related to terminals (text input/
output environment) and consoles (physical terminals). While consoles are
terminals are similar; the shell is slightly different. The shell is primarily used to
start other programs, so you use commands in a shell environment through the
terminal or console. That said, there are multiple types of shells, and computers
can generally switch between them. To determine which shell type you are using,
type $ echo $SHELL into your Terminal window. I almost exclusively work in a
bash environment, which returns /bin/bash to the Terminal. Bash is the default
shell for most Linux distributions. However, as I mentioned, there are other shells,
like csh (C-shell), zsh (Z shell), fish (friendly interactive shell), tcsh (TENEX C-shell),
and ksh (KornShell).

If I wanted to change from a bash shell to a C-shell, I would type csh . To switch
back, I would type bash . Some programs require the use of a different shell type,
which may also differ by how it was installed. Gaussian, for instance, likes C-shell,
but newer editions have install instructions for bash shells (in case you’re
wondering, the difference is having a .login for C-shell and a .profile for
bash).

Bash Configuration File (the
.bash_profile)
The .bashrc (and other .bash files) are resource files found in the home
directory. Because they are hidden files (i.e. their filename starts with a period so
that they do not accidentally get deleted), you need to use ls -a (page 24) to see
them. They list different things, like aliases or variables that should be available
across your computer upon startup. In general, items from original .bashrc file
should not be deleted, because they reference other hidden files that may contain
similar information. There is usually a commented line that says to add user-
specific information after that line.

On my Mac laptop, the .bashrc file is called the .bash_profile , which is
shown below:

Shells (bash and csh) PDF last generated: February 23, 2020

Intoduction to UNIX User Guide Page 9



#Access VMD Executable
alias vmd='/Applications/VMD\ 1.9.2.app/Contents/Resources/VM
D.app/Contents/MacOS/VMD'

#Access Chimera Executable
alias chimera='/Applications/Chimera.app/Contents/MacOS/chimer
a'

#aliases
alias work='ssh -Y username@my-work-computer.org'
alias local='ssh username@my-local-computer.com'
alias dist='ssh username@some-distant-computer.edu'

# Setting PATH for Python 3.6
# The original version is saved in .bash_profile.pysave
PATH="/Library/Frameworks/Python.framework/Versions/3.6/bin:${P
ATH}"
export PATH

# added by Anaconda3 5.1.0 installer
export PATH="/anaconda3/bin:$PATH"

As you can see, I use mine mostly for aliases (page 99). If you are using a Linux
system with a .bashrc file, it is generally a good practice to save aliases under a
separate .bash_aliases file.

Every time something is added to a .bash file, the source command needs to
be used to tell the computer to “reload” that file. This is because every time a
Terminal is opened, the .bash files are read as-is to set up the environment
you’re working in, and changes are not tracked throughout the session. To source
a specific file (in the following example, .bash_aliases , use

$ source ~/.bash_aliases

Bash files are different on every computer, so if you have specific things you put
into your .bash files to make your life easier, you’ll need to copy those lines into
the .bash files on a new system.

Bash Configuration File (the .bash_profile) PDF last generated: February 23, 2020

Intoduction to UNIX User Guide Page 10



C-Shell Configuration File (the .cshrc)
Like bash shells, the C-shell has a configuration file filled with information that
helps set up the environment. C-shell uses the .cshrc and the .login files.
The default of a .cshrc includes the following text, which should not be deleted.

if (-e /usr/local/etc/csh.cshrc) then
source /usr/local/etc/csh.cshrc

endif

After those lines, or a commented line that specifies you can now add information,
you can add in specific information that you would like for the environment (like
aliases and environment variables (page 12)). Like with the .bashrc , the .cshrc

file needs to be sourced through a command like $ source ~/.cshrc .

Similarly, the configuration files are different on every computer, so if you have
specific things you put into your .cshrc file to make your life easier, you’ll need
to copy those lines into the .cshrc file on a new system.

C-Shell Configuration File (the .cshrc) PDF last generated: February 23, 2020

Intoduction to UNIX User Guide Page 11



Environment Variables
Environment variables are variables that help set the environment. Since that was
a horrible definition, I’ll try to define by example. The environment is the scene of
the play, and the variables are the props that help set the scene (everything from
the character’s clothing to the backdrop). Basically, the environment variables are
strings that the computer sees as something else. One example of this is the
$AMBERHOME variable, which is used to run the Amber program. Instead of typing
/usr/local/amber18 , users can simply type $AMBERHOME/ with the rest of the

command they want to use. The specified path of an environment variable can be
checked through $ echo $VARIABLE

A list of all environment variables will be given with the env command.

Setting Bash Environment Variables
To set an environment variable in a bash environment, use:

export VARIABLE=/path/to/variable

The AMBERHOME variable would be set through

export VARIABLE=/path/to/variable

which can be checked with

$ echo $AMBERHOME

Setting C-Shell Environment Variables
To set an environment variable in a C-shell environment, use:

setenv VARIABLE /path/to/variable

Environment Variables PDF last generated: February 23, 2020

Intoduction to UNIX User Guide Page 12



$PATH
The $PATH variable makes it possible to access programs simply by running their
name, which is actually the case for most commands (like ls (page 24) and head
(page 90)). PATH makes all of these programs accessible simultaneously, by
making them available anywhere. Installed programs are added to the PATH. You
can also add directories or files to the PATH by defining them in the configuration
file.

For a .bash_profile or .profile (you shouldn’t add user-defined path
definitions to the .bashrc ):

export PATH=$PATH:/home/rest/of/path

For a .cshrc or .login :

setenv PATH $PATH\:/home/rest/of/path

Remember to source the file after things have been added.

Since the PATH includes a lot of important things, and almost none of them are
user-defined, you should not delete variables from the PATH.

$PATH PDF last generated: February 23, 2020

Intoduction to UNIX User Guide Page 13



Housekeeping
Using the command line is going to be a lot easier if you keep a few simple tips in
mind.

1. For the love of everything, please name files and directories (folders)
following a specific set of conventions. What are those conventions?
Well, for starters, don’t use any of the symbols in the table below (page
14).

Table: Symbols on the naughty list
# pound < left angle bracket $ dollar sign

% percent > right angle bracket ! exclamation point

& ampersand * asterisk ' single quotes

{ left curly bracket ? question mark " double quotes

} right curly bracket / forward slash : colon

\ back slash blank spaces @ at sign

; semicolon ~ tilde | pipe

• “But I already used these symbols in my past naming! What do I do
now?” Well, my personal suggestion (for everything other than spaces), is
that you should rename them through the normal way of accessing
folders and right-clicking the name. Trying to rename them through the
command line is just going to return errors. Spaces can be addressed
through using \ / in place of the space and renaming them through mv
(page 33), but this can get rather annoying if you have similarly named
files, all with spaces.

• “I can’t use spaces! What do I do now?!?” Welcome to Computer 101.
The easiest way around using spaces is through _ (the underscore) or -

(the dash). People that do a lot of web-work are vehemently against
underscores because of the implications in search engine indexing and
website creation. So if that seems like you, or will eventually be you, you
probably just want to use dashes.

2. Do not start or end file names with spaces, periods, hyphens, or
underscores.

Housekeeping PDF last generated: February 23, 2020

Intoduction to UNIX User Guide Page 14



3. Keep file names relevant, but on the shorter side. Linux has a max
filename length of 255 characters (who needs that many?!?) and a
maximum path length of 4096 (information on paths can be found in pwd
(page 26)).

4. Operating systems are case sensitive, so it’s always a good idea to use
lowercase for everything. I use uppercase for directories and acronyms;
keep yourself consistent. The file Alpha.txt is different from
alpha.txt , and thus both could exist within a given directory.

5. Don’t name files the same thing as a Unix command. Why you would
even consider this, I don’t really know.

6. File extensions are important. Try to use widely-known ones, like .txt

for a text file. Scripts usually end with .sh , python scripts usually end
with .py .

Table: Symbols on the naughty list PDF last generated: February 23, 2020

Intoduction to UNIX User Guide Page 15



Regular Expressions
Regular Expressions (aka regexes) are strings that describe specific characters.
They may be used in place of something else, or to make searches more versatile,
and vary between programming languages. More common regexes include \t

for tab, \n to specify a new line. Others are shown in the table below (page 16).

Table: Common regular expressions.
Character Usage

^ matches beginning of lines

$ matches end of lines

. matches single characters

* matches zero or non-initial character appearances

[chars] matches the specified characters; ranges denoted with - symbol

[0-9] matches a single number

[a-zA-Z] matches a single letter

Regular Expressions PDF last generated: February 23, 2020

Intoduction to UNIX User Guide Page 16



ssh
Connecting to other computers (or clusters, etc.) involves a command called ssh .
It stands for “secure shell,” and allows for secure remote access to other devices.
This is helpful.

Oftentimes, there are people much smarter than me that want to heavily protect
their computers. Universities are one example. They create strong firewalls to
protect information, which means that a special way to remote access computers
must be used, and that way is through VPN. VPN stands for “virtual private
network,” and extends the private network over the public sphere for those
allowed access. For those affiliated with the University of North Texas (UNT), the
easiest thing is to download Cisco AnyConnect. More information on how to
download Cisco AnyConnect for UNT students is available at: UNT ITS

Once installed and connected, accessing computers, clusters, and systems on
the UNT network is possible. The VPN address for UNT is vpn.unt.edu , and the
login is the same as your UNT email login.

After connection, the command

$ ssh username@ipaddress.or.title

is used to access the device. For instance, if someone regularly logs in as
euid123 and the computer’s network address is talon3.hpc.unt.edu , then

their ssh line would be:

$ ssh euid123@talon3.hpc.unt.edu

ssh PDF last generated: February 23, 2020

Intoduction to UNIX User Guide Page 17

https://itservices.cas.unt.edu/services/server/network/cisco-anyconnect-mobility-client-vpn


ssh with Graphical Forwarding (X11)
There is a way to set up graphical forwarding (known as X11 forwarding).
Basically, this means that visual windows opened through the Terminal are
forwarded to your screen. X11 capability is available through PuTTY and
MobaXterm on Windows, XQuartz on Mac, and the regular Terminal on Linux.
Sending computers (where you’ve accessed via ssh ), and receiving Unix-like
machines need to have two options located in /etc/ssh/sshd_config enabled.
These are X11Forwarding yes and X11UseForwarding yes .

Once these things have been configured, you can start an ssh session with X11
forwarding through

$ ssh -Y euid123@location

The -Y uses a secure connection. Otherwise, a -X flag can be used if security
isn’t a major concern. To check the X11 forwarding, the commands xclock or
xeyes can be used.

Use of `xclock` (left) and `xeyes` (right) to test X11 forwarding.

ssh with Graphical Forwarding (X11) PDF last generated: February 23, 2020

Intoduction to UNIX User Guide Page 18

https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html
https://mobaxterm.mobatek.net/


passwd: Changing your Password
Changing your password can be done through the command line with passwd .

euid123:~$ passwd
Changing password for used euid123.
(current) LDAP Password:
New password:
Retype new password:
passwd: all authentication tokens updated successfully.

New passwords should be slightly complex (meaning digits 0 through 9,
punctuation marks, and different cases of letters), otherwise the command will
reject it (and if not, it should reject it). Passwords should be at least 6 characters
long. If the system requires regular password changes, then it will alert you that it
is close to expiring.

passwd: Changing your Password PDF last generated: February 23, 2020

Intoduction to UNIX User Guide Page 19



exit
Anytime you want to exit the Terminal (or sever your ssh connection), just type
exit . If you’re every in a territory where exit isn’t letting you exit, try quit or
q .

exit PDF last generated: February 23, 2020

Intoduction to UNIX User Guide Page 20



cd
Summary: If you've ever decided to organize, ever, then you've
probably thought of putting things in folders. Computers are no
different, except their folder system is called a directory tree. Each
folder is known as a directory.

One of the most important commands created is cd which stands for “change
directory.” Basically, if I’m in folder A , but want to be in Folder_17 inside of it,
then I would use

A$ cd Folder_17/

If you were going through multiple directories, you would need some slashes.
Slashes are important, because they signal the need to sift through a few
directories to get to where you want to go. A specific example of this is:

$ cd /storage/scratch/share/insert_PI_here_group/

A slash after cd but before the location signifies that the computer has to
backtrack a little bit (i.e. get away from your home directory), and a slash at the
end of the command signifies the end of the folder name. The very final slash isn’t
crucial to the success of the command. Unix is very helpful, in that it will tell you
when it can’t find what you tried to make it find with an error appearing similar to:

-bash: cd: storage/scratch/share/insert_PI_here_group/: No suc
h file or directory

which allows you check yourself and retry. Instead of retyping everything you just
did (because computer people are lazy, and commands can be overly long), just
hit the up arrow key. A log of every command you’ve typed is available in the
hidden trenches of your computer, so you can scroll through all of them with the
up and down arrow keys. Additionally, if you’re typing a name of something
located in that folder (or following that path), you can hit the tab key to auto-fill the
word you’re trying for. However, if you have two files, one named

cd PDF last generated: February 23, 2020

Intoduction to UNIX User Guide Page 21



CrazyPantsA.txt and the other named CrazyTownA.txt then tab will finish
filling in Crazy , require you to type a P or T , and then a second tab will finish
the title.

cd can also be used to go back to the previous directory (like if you went one
folder too far). This is achieved through cd .. . To backup multiple directories,
you add /.. for each additional jump to make. If I was in folder D , I would use
the following to return to folder A .

$ cd ../../../

Similarly, using cd - will take you back to the previous directory.

~ $ cd 82/98/27
27 $ cd ~/ab/ef/gh
gh $ cd -
27 $

cd PDF last generated: February 23, 2020

Intoduction to UNIX User Guide Page 22



mkdir
mkdir stands for “make directory,” and can be used to create new directories

(folders) from the command line. The command to make a folder titled testingR

would be:

$ mkdir testingR/

Check out ls (page 24) to find out what’s inside!

mkdir PDF last generated: February 23, 2020

Intoduction to UNIX User Guide Page 23



ls (and an intro to permissions and
flags)
To list items in directories, the command ls is employed. The “s” specifies that it
is a short list, as opposed to ll , which is a long list. If you’re unfamiliar with how
the computer lists things the long way, ls arranges the information in a more
common way.

[euid123@computer ~]$ ls
bin        chm5710        lib        chm5660        dropbo
x        mdinputs        test-R
[euid123@computer ~]$ ll
total 28
drwxrwxr-x 12 euid123 eagle12 4096 Apr 22 14:31 bin
drwxrwxr-x   7 euid123 eagle12 4096 Dec 13 13:38 chm5660
drwxrwxr-x   3 euid123 eagle12 4096 Apr 12 11:08 chm5710
drwxrwxr-x   2 euid123 eagle12 4096 Aug 17     2018 dropbox
drwxr-xr-x   4 euid123 eagle12 4096 Apr 22 14:17 lib
drwxrwxr-x   5 euid123 eagle12 4096 Nov    5   2018 mdinputs
drwxrwxr-x   2 euid123 eagle12 4096 May 22 09:55 test-R
[euid123@computer ~]$ ls -lthr
total 28K
drwxrwxr-x   2 euid123 eagle12 4.0K Aug 17     2018 dropbox
drwxrwxr-x   5 euid123 eagle12 4.0K Nov    5   2018 mdinputs
drwxrwxr-x   7 euid123 eagle12 4.0K Dec 13 13:38 chm5660
drwxrwxr-x   3 euid123 eagle12 4.0K Apr 12 11:08 chm5710
drwxr-xr-x   4 euid123 eagle12 4.0K Apr 22 14:17 lib
drwxrwxr-x 12 euid123 eagle12 4.0K Apr 22 14:31 bin
drwxrwxr-x   2 euid123 eagle12 4.0K May 22 09:55 test-R
[euid123@computer ~]$

The above example shows several different listing options and what they produce.
Some of these have flags, denoted by their - , that place conditions or remove
restrictions on the command’s use. The flag in ls -lthr is actually a
combination of 4 different flag types. The l shows the long list formatting, the t

displays newest files first (based on their timestamp), the h puts file sizes in
“human readable format”, and the r reverses their listing (so now the newer files
are at the bottom). Including an a flag ( ls -a ) for the short list lists everything in
the folder, including hidden files (explained further in aliases (page 99)).

In the long format, you can see different information blocks. The drwxr-xr-x

group shows the permissions associated with the files. The first d tells you if the
item is a directory (d) or not (-). The next three letters, rwx show the user’s

ls (and an intro to permissions and flags) PDF last generated: February 23, 2020

Intoduction to UNIX User Guide Page 24



permissions, which in this case are given and include “R ead,” “W rite,” and “e X
ecute.” If these were not given, there would be more dashes. The next three are
the permissions for the user’s group, and the final three are for all users of the
computer or cluster. They follow the same rwx/rwx/rwx format. Changing
permissions is possible with the chmod (page 123) command, which is discussed
later on.

The next group tells you how many items are in the directory (2, 6, and 7,
respectively). The next group lists the owner ( euid123 ). After that is the group the
permissions are assigned to ( eagle12 ). The final groups are the file size, the date
and time modified, and the name of the file or directory. Note the difference in
how file size is given based on the -h flag.

ls (and an intro to permissions and flags) PDF last generated: February 23, 2020

Intoduction to UNIX User Guide Page 25



pwd
If you ever get lost in your computer, then pwd is for you. This command stands
for “print working directory” or “pathway directory.” It prints your current location.
For example, if you’re located in a shared insert_PI_here_group folder and
used pwd , it’d look like: \begin{lstlisting}[style=P1] $ pwd /storage/scratch/share/
insert_PI_here_group/ \end{lstlisting} This location can be copied from the
command line and pasted into various locations where it is needed (like code
input lines). Paths are important for programs, copying files, creating new files;
many commands are path-dependent. Think of the path as the computer’s
Google Maps. Without it, you wouldn’t get anywhere. Similarly, you can think of an
alias (page 0) as the routes you use so often, you have them memorized.

pwd PDF last generated: February 23, 2020

Intoduction to UNIX User Guide Page 26

http://localhost:4010/UNIXguide-aliases.html


tree
The tree command will list out directory contents in a tree format.

euid123@computer:~$ tree VirtualBox_VMs/
VirtualBox_VMs/
└── Ubuntu_64_1804

├── Logs
│ ├── VBox.log
│ ├── VBox.log.1
│ └── VBox.log.2
├── Snapshots
│ ├── 2020-02-12T12-00-12-123456000Z.sav
│ └── {123ab123-1234-1a2b-aba1-cd12aa12a1bc}.vdi
├── Ubuntu_64_1804.vbox
├── Ubuntu_64_1804.vbox-prev
└── Ubuntu_64_1804.vdi

3 directories, 8 files

 Note: You don’t need to specify a folder with the tree command. Here,
VirtualBox_VMs/ was specified from a home folder where the regular result
would have just cluttered this page!

Different flags can be used to give more information, or only show specific things
in tree. By default, all files and subdirectories are shown.

The -d flag limits the result to just directory names. Depending on where you do
this command from, there can still be a lot of directories returned!

euid123@computer:~$ tree -d VirtualBox_VMs/
VirtualBox_VMs/
└── Ubuntu_64_1804

├── Logs
└── Snapshots

3 directories

You can use the -L flag to limit your search to a specific “level” or depth. After
the flag, you specify how many levels you want to show (2 are selected here).

tree PDF last generated: February 23, 2020

Intoduction to UNIX User Guide Page 27



euid123@computer:~$ tree -L 2 VirtualBox_VMs/
VirtualBox_VMs/
└── Ubuntu_64_1804

├── Logs
├── Snapshots
├── Ubuntu_64_1804.vbox
├── Ubuntu_64_1804.vbox-prev
└── Ubuntu_64_1804.vdi

3 directories, 3 files

Using -h will print file sizes in human-readable format.

euid123@computer:~$ tree -h VirtualBox_VMs/
VirtualBox_VMs/
└── [ 224]  Ubuntu_64_1804

├── [ 160]  Logs
│ ├── [151K]  VBox.log
│ ├── [150K]  VBox.log.1
│ └── [132K]  VBox.log.2
├── [ 128]  Snapshots
│ ├── [654M]  2020-02-12T12-00-12-123456000Z.sav
│ └── [ 49M] {123ab123-1234-1a2b-aba1-cd12aa12a1bc}.vdi
├── [7.5K]  Ubuntu_64_1804.vbox
├── [9.2K]  Ubuntu_64_1804.vbox-prev
└── [6.0G]  Ubuntu_64_1804.vdi

3 directories, 8 files

You can use the -P option to search for patterns, thus filtering your results.

euid123@computer:~$ tree -P Ubuntu* VirtualBox_VMs/
VirtualBox_VMs/
└── Ubuntu_64_1804

├── Logs
├── Snapshots
├── Ubuntu_64_1804.vbox
├── Ubuntu_64_1804.vbox-prev
└── Ubuntu_64_1804.vdi

3 directories, 3 files

tree PDF last generated: February 23, 2020

Intoduction to UNIX User Guide Page 28



If you need the full paths to the folder, you can add the -f flag.

euid123@computer:~$ tree -f VirtualBox_VMs/
VirtualBox_VMs
└── VirtualBox_VMs/Ubuntu_64_1804

├── VirtualBox_VMs/Ubuntu_64_1804/Logs
│ ├── VirtualBox_VMs/Ubuntu_64_1804/Logs/VBox.log
│ ├── VirtualBox_VMs/Ubuntu_64_1804/Logs/VBox.log.1
│ └── VirtualBox_VMs/Ubuntu_64_1804/Logs/VBox.log.2
├── VirtualBox_VMs/Ubuntu_64_1804/Snapshots
│ ├── VirtualBox_VMs/Ubuntu_64_1804/Snapshots/2020-02-12T

12-00-12-123456000Z.sav
│ └── VirtualBox_VMs/Ubuntu_64_1804/Snapshots/{123ab123-1

234-1a2b-aba1-cd12aa12a1bc}.vdi
├── VirtualBox_VMs/Ubuntu_64_1804/Ubuntu_64_1804.vbox
├── VirtualBox_VMs/Ubuntu_64_1804/Ubuntu_64_1804.vbox-prev
└── VirtualBox_VMs/Ubuntu_64_1804/Ubuntu_64_1804.vdi

3 directories, 8 files

If you want to save the tree structure to a file, you can specify the -o flag.

$ tree -f VirtualBox_VMs/ -o virtual_box_tree.txt

tree PDF last generated: February 23, 2020

Intoduction to UNIX User Guide Page 29



hostname
Have you ever forgotten which computer you’re using? Probably not, since most
people aren’t working with multiple systems at one time. But it can happen! Which
is why hostname exists. It’s not always helpful, depending on what will be
returned, and not always necessary because most terminals include where you’re
connected, but it is an option you can use.

$ hostname
hawkeye

hostname PDF last generated: February 23, 2020

Intoduction to UNIX User Guide Page 30



whoami
Along the same lines of getting lost in your computer or which computer you’re
using, you can forget which user you’re acting under. The aptly labelled whoami

command tells you what username you’re acting under.

$ whoami
username

whoami PDF last generated: February 23, 2020

Intoduction to UNIX User Guide Page 31



which
When there are multiple installations of a program in different locations on a
computer, it can be helpful to know which installation you’re trying to access. The
which command can be used to prompt the path for the program location you

would be accessing.

$ which python
/anaconda3/bin/python

which PDF last generated: February 23, 2020

Intoduction to UNIX User Guide Page 32



mv
Summary: You can copy files and folders from a number of starting
locations. You can also rename them, or permanently delete them,
from the command line.

Renaming files is as easy as mv (who am I kidding, I’m not funny). To use this
command, you need to include the current name and the new name in the
command.

$ mv current_name.txt new_name.txt

That’s it! Your file has been renamed!

mv PDF last generated: February 23, 2020

Intoduction to UNIX User Guide Page 33



cp
Copying files locally can be achieved through cp . This command can be used to
copy a file in the same directory, or copy it from a directory to another directory.
The following example demonstrates copying a file titled current_name.txt to a
file titled copy.txt .

$ cp current_name.txt copy.txt

That wasn’t so bad! Now, if I had a file in directory A , but I want it to have the
same name in directory C , I would follow:

A$ cp current_name.txt /path/to/dirC/copy.txt

where /path/to/dirC/ would be based on whatever pwd says from inside
directory C . Entire directories can be copied by making the copy recursive with
the -r flag. This means the folder, and its contents, will all be copied to the
location you specify.

$ cp -r Folder_A/ Folder_B/

cp PDF last generated: February 23, 2020

Intoduction to UNIX User Guide Page 34



scp
Secure copy, or scp , is a primary means (along with rsync (page 36)) of copying
files between computers/clusters/etc. It works in a similar way to cp , but with
some of the information of ssh thrown in.

$ scp current_name.txt euid123@talon3.hpc.unt.edu:~/testingR/co
py.txt

In this example, the item current_name.txt is being copied from the local
computer (or wherever you’re currently located) to the user euid123 on the
device talon3.hpc. unt.edu . The file is being copied to the the folder
testingR off the home directory (remember the tilde) of user euid123 . Since

the file name was changed (it doesn’t have to be; if it isn’t, then the copy.txt

portion is either left off or also current_name.txt ), it was included in the path.
After this command is run, a password prompt will appear, asking for the
password of euid123@talon3.hpc.unt.edu . After that is input, then the copying
begins. Another use for scp is to copy entire directories, and not just files, and it
is thus very useful. For copying an entire directory, the -r (recursion) flag must
be used.

$ scp -r directory/ place@to.go.to:~/location/

scp PDF last generated: February 23, 2020

Intoduction to UNIX User Guide Page 35



rsync
A way to copy files to protect against newer files being overwritten by those being
transferred is using rsync. This is not recommended between personal computers
and UNT computer clusters, as it takes a lot of time due to the fact-checking
nature of the command. Essentially, if folder A has files 1-23, and folder B has files
20-35, then files 1-19 will be copied just fine. Files 20-23 will only be copied if the
files in B have an older “last updated” stamp.

For this example, navigate to the folder that you want things to be copied from.
The * (asterisk) specifies “from here.”

$ rsync -azvp --progress * euid123@talon3.hpc.unt.edu:/home/eui
d123/directory

The flags in the order of azvp stand for archive, compress, verbosity, and
permissions. Essentially, the files will be compressed to cut down on transfer time
and the permissions won’t change on the synced files. Additionally, the --

progress portion will show completion information for each file being transferred.

For this example, navigate to the folder that you want things to be copied into.
The last bit ( * . ) basically says “from there to here.”

$ rsync -azvp --progress euid123@talon3.hpc.unt.edu:/home/euid1
23/directory/* .

This will copy the files from Talon3 to the local computer. The reason both types
are specified for rsync is because sometimes the way the computer systems you
work with will only allow one or the other (because they hate you). So, it is helpful
to be able to work both ways.

rsync PDF last generated: February 23, 2020

Intoduction to UNIX User Guide Page 36



sftp
For transferring files between two remote systems (aka through an ssh

connection), you can use sftp (Secure File Transfer Protocol).
First, navigate to the folder that you would like to send or receive information from.
Once sftp is initiated, the folder for the origin computer cannot be changed.
Then, start the protocol with

$ sftp username@place

You can specify the folder to navigate to, if you want, but do not use the ~ in
place of /home/username (it will return an error).

$ sftp person@computer.location.org:/home/person/path/to/folde
r/
Password:
Connected to computer.location.org.
Changing to: /home/person/path/to/folder/
sftp>

You can create new directories in the receiving end normally with mkdir , and use
cd as normal. To send information, use put and to receive use get .

sftp> put filename
sftp> get filename

Filezilla is a helpful program for doing sftp through a graphical interface. When
using Filezilla, you enter your username and password for where you’re trying to
connect. Typically, you will use port 22 for connections.

Setting up Filezilla.

sftp PDF last generated: February 23, 2020

Intoduction to UNIX User Guide Page 37

https://filezilla-project.org/


rm
Sometimes you need to permanently delete things. For instance, you realized after
2802 attempts that attempt 1 was just horribly incorrect and is taking up valuable
memory. The command to use is rm , which means to “remove.” To remove an
individual file, titled badfile.txt , use

$ rm badfile.txt

Sometimes, that’s not enough though, and your entire directory for Attempt_1

needs to go. In that case, you’ll need the -r flag, which makes the deletion
recursive.

$ rm -r Attempt_1

rm PDF last generated: February 23, 2020

Intoduction to UNIX User Guide Page 38



gzip and gunzip
Summary: Because data management is so essential to
computational work, it is important to know about compressing and
expanding files. You're probably familiar with .zip folders if you've
ever downloaded anything remotely large from the internet. Dealing
with zipped (compressed) files is another thing you can do with the
command line.

The most common way to compress files in Unix is though gzip . Zipping a file
turns it into a binary file, which is no longer readable (until it is uncompressed). To
zip a file using this command, the syntax (for any number of files, or perhaps a
directory) is

$ gzip fileA fileB...

If you use the -9 flag, then the files will be compressed as much as possible
( gzip -9 fileA.... ). Using gzip adds a .gz extension to the end of the
filename. To unzip a .gz file, the command is gunzip . Unzipping returns them
in their original state.

$ gunzip fileA.gz fileB.gz...

If you want to use this command to zip or unzip every file in your directory, use a
wildcard.

$ gzip -9 *
$ gunzip *

gzip and gunzip PDF last generated: February 23, 2020

Intoduction to UNIX User Guide Page 39



bzip2 and bunzip2
The less common way of compressing files is using bzip2 . Like with gzip , the
syntax is

$ bzip2 fileA fileB...

Using bzip2 adds the extension .bz2 . To uncompress a .bz2 file, you can use
the bunzip2 command.

$ bzip2 fileA.bz2 fileB.bz2...

If you want to use this command to zip or unzip every .bz2 file in your directory,
use a wildcard.

$ bzip2 *
$ bunzip2 *

bzip2 and bunzip2 PDF last generated: February 23, 2020

Intoduction to UNIX User Guide Page 40



zip and unzip
Finally, for the times you need to create a folder in the zip folder format, then you
can use zip , which puts things in the .zip format.

$ zip zipfoldername.zip file1 file2 file3

To zip a directory, use the -r flag.

$ zip -r zipfoldername.zip dir

To unzip the folder, use

$ unzip zipfoldername.zip

zip and unzip PDF last generated: February 23, 2020

Intoduction to UNIX User Guide Page 41



tar
A common way of packaging up files into a single combined file is to use the tar

command to create a tarball. Oftentimes, the source code for a program is
downloadable as a tarball file, since it’s easier to distribute and receive. The
following command shows the basic syntax, where a folder (or folders) or a bunch
of files can be made into a tarball. It is common to just put the files into a single
folder and tar that folder.

$ tar [options] tarball.tar folder/files

The tar command is used to both package and unpackage tarballs. Thus, the
options used are important. Using the -z flag will zip the folder (and thus
compress its contents), and yield the .tgz extension. The -v flag stands for
verbose and prints as much information as possible while using the command.
The -f flag specifies that the contents should be put into an archive file. Finally,
the -c flag specifies that the tarball will be created.

$ tar -zcvf tarball.tgz folder/

To unpack a tarball, use the -x flag (for extract) instead of the -c (creation) flag.

$ tar -zxvf tarball.tgz

If the tarball extension was .tar instead of .tgz , then you wouldn’t need to
include the -z flag, since the file wasn’t compressed through gzip (page 39)
during creation.

 Note: Note: if you wish to compress the file using bzip2 (page 40), use a
-j flag instead of the -z flag.

tar PDF last generated: February 23, 2020

Intoduction to UNIX User Guide Page 42



top
To see what processes (aka, what’s taking up all of your CPUs) are running on
your computer, use top .

different process IDs and general information for all running tasks

Use of `top` to show different processes.

The way to exit top is by hitting q . To the very left is the process ID (PID). That
number can be used to kill processes with kill (page 45).

top PDF last generated: February 23, 2020

Intoduction to UNIX User Guide Page 43



ps
Another way to see what processes are running, but only for what is in your
current shell or window, is with ps . With ps , the PID is the process identifier,
TTY shows the Terminal window running the process, and CMD is the command

that is running.

[euid123@cruntch3 ~]$ ps
PID TTY          TIME CMD

60966 pts/12   00:00:00 bash
61012 pts/12   00:00:00 ps

Because the example was run in a bash environment, that appears as a line. If it
were run in a C shell script, csh would appear.

ps PDF last generated: February 23, 2020

Intoduction to UNIX User Guide Page 44



kill
The kill command is used to terminate processes. To use it, simply use

$ kill -9 PID

where PID is the process ID found by using top . The -9 flag ensures that the
process is killed by force.

kill PDF last generated: February 23, 2020

Intoduction to UNIX User Guide Page 45



watch
The watch command allows you to continuously watch a command. To use it,
start the command with the word watch and any options that would be
applicable to watch. Options for the command that watch is being combined
with go after that command. One option that can be used with watch is the -n

flag, which allows you to specify a time (in seconds) that the command should be
renewed with. As an example, the following command will watch the rsync (page
36) or qstat (page 126) command for a specific user, updating it every 5 seconds
instead of the default 2 seconds.

$ watch -n 5 qstat -u euid123

Because the command is continuously updating, the only ways to end it are with
rsync (page 36) or cntrl+c (page 47) or closing the terminal.

watch PDF last generated: February 23, 2020

Intoduction to UNIX User Guide Page 46



Cntrl+C: Abort Abort Abort
Occasionally (or not occasionally, I don’t know your life), you submit a command
like rsync (page 36) or scp (page 35) and you really wish you hadn’t. Maybe it’s
because it is taking too long and you can’t keep your laptop open for the length of
time it needs to run, or maybe because you’re missing a crucial file for the
operation. Fear not! There’s an abort command! All you need to do is type
Cntrl+C (like when you copy things in Microsoft Word). [Note: anything that’s

been completed won’t be undone.]

Cntrl+C: Abort Abort Abort PDF last generated: February 23, 2020

Intoduction to UNIX User Guide Page 47



Cntrl+Z: Background Jobs
Sometimes you have long-term jobs running locally in a Terminal, so the
command line is unavailable, but you need to do other things in said Terminal. If
you know before the job is submitted that it should be run in the background, then
submit it with an & . However, if it was submitted without the ampersand, then
you can simply use Cntrl+Z (like undo in Microsoft Word) to temporarily
suspend the job. To make it run in the background, type bg . If it is alright to run
in the foreground again, type fg .

Similarly, if you have an ssh connection, where the job will quit when the ssh
session has ended, then adding nohup before the command, in addition the
ampersand, will ensure it runs when the connection is terminated. This is shown
below.

$ nohup rsync -azvp euid123@talon3.hpc.unt.edu:/home/euid123/di
rectory/* . &

Cntrl+Z: Background Jobs PDF last generated: February 23, 2020

Intoduction to UNIX User Guide Page 48



nvidia-smi
The way to check GPUs for running jobs is to use the nvidia-smi command.
Using this command is not only helpful to see which GPUs are available (so you
don’t double up on jobs and lead to things like overheating…) but also to check
that your submitted jobs are actually running. In the following example, AMBER is
running on core 3, and nothing else is running on cores 0-2 and 4-7.

nvidia-smi PDF last generated: February 23, 2020

Intoduction to UNIX User Guide Page 49



Mon Mar  5 21:37:17 2018
+--------------------------------------------------------------
---------------+
| NVIDIA-SMI 367.48                 Driver Version: 367.4
8                    |
|-------------------------------+----------------------
+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volati
le Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Ut
il  Compute M. |
|===============================+======================+=======
===============|
|   0  Tesla K80           On   | 0000:06:00.0     Off
|                    0 |
| N/A   21C    P8    26W / 149W |      0MiB / 11439MiB |
0\% Default |
+-------------------------------+----------------------
+----------------------+
|   1  Tesla K80           On   | 0000:07:00.0     Off
|                    0 |
| N/A   27C    P8    29W / 149W |      0MiB / 11439MiB |
0\% Default |
+-------------------------------+----------------------
+----------------------+
|   2  Tesla K80           On   | 0000:0A:00.0     Off
|                    0 |
| N/A   22C    P8    28W / 149W |      0MiB / 11439MiB |
0\% Default |
+-------------------------------+----------------------
+----------------------+
|   3  Tesla K80           On   | 0000:0B:00.0     Off
|                    0 |
| N/A   62C    P0   147W / 149W |    290MiB / 11439MiB |     9
9\% Default |
+-------------------------------+----------------------
+----------------------+
|   4  Tesla K80           On   | 0000:0E:00.0     Off
|                    0 |
| N/A   21C    P8    25W / 149W |      0MiB / 11439MiB |
0\% Default |
+-------------------------------+----------------------
+----------------------+
|   5  Tesla K80           On   | 0000:0F:00.0     Off
|                    0 |

nvidia-smi PDF last generated: February 23, 2020

Intoduction to UNIX User Guide Page 50



| N/A   27C    P8    31W / 149W |      0MiB / 11439MiB |
0\% Default |
+-------------------------------+----------------------
+----------------------+
|   6  Tesla K80           On   | 0000:12:00.0     Off
|                    0 |
| N/A   21C    P8    26W / 149W |      0MiB / 11439MiB |
0\% Default |
+-------------------------------+----------------------
+----------------------+
|   7  Tesla K80           On   | 0000:13:00.0     Off
|                    0 |
| N/A   28C    P8    27W / 149W |      0MiB / 11439MiB |
0\% Default |
+-------------------------------+----------------------
+----------------------+

+--------------------------------------------------------------
---------------+
| Processe
s:                                                       GPU Me
mory |
|  GPU       PID  Type  Process nam
e                               Usage      |
|==============================================================
===============|
|    3     64236    C   /share/apps/AMBER/amber16/bin/pmemd.cud
a       288MiB |
+--------------------------------------------------------------
---------------+

nvidia-smi PDF last generated: February 23, 2020

Intoduction to UNIX User Guide Page 51



du
The du command allows you to check how much storage space is available on
the computer. There are two flags that make du much more managable: -h (for
human-readable) and -s for summary. Human-readable format translates the
number of bytes into bigger sizes (like KB, MB, GB, TB, etc.). Summary totals the
amount of space for a folder. Running without the summary will provide individual
file sizes.

\begin{lstlisting}[style=P1] [euid123@talon3 ~]$ du 4 ./.mozilla/plugins 4 ./.mozilla/
extensions 12 ./.mozilla 4 ./.nv/ComputeCache 8 ./.nv 8 ./.ssh 52777464 ./A/A/A
52777468 ./A/A/B 4267968 ./A/B 50819328 ./A/D/A 52509684 ./A/D/B 50339308
./A/D/C —-MORE—– 379862560 . [euid123@cruntch3 ~]$ du -h 4.0K ./.mozilla/
plugins 4.0K ./.mozilla/extensions 12K ./.mozilla 4.0K ./.nv/ComputeCache 8.0K
./.nv 8.0K ./.ssh 51G ./A/A/A 51G ./A/A/B 4.1G ./A/B 49G ./A/D/A 51G ./A/D/B
49G ./A/D/C —-MORE—– 363G . [euid123@talon3 ~]$ du -sh 363G \end{lstlisting}

du PDF last generated: February 23, 2020

Intoduction to UNIX User Guide Page 52



sleep
If you’ve ever wanted to pause a computer and make it practically unusable for a
set period of time, then the sleep command is for you. The command syntax is
sleep X , where X is the length of time in seconds you would like the computer

to sleep for. It is likely that this may only be useful in scripts where you need to a
make sure a step has been completed.

sleep PDF last generated: February 23, 2020

Intoduction to UNIX User Guide Page 53



crontab: a Scheduling Tool
Commands can be set up to run at specific intervals using crontab . For
instance, automatic backups to an external hard drive can be scheduled to run
weekly. The name is derived from Kronos, the Greek god of time, and “table,”
since the information is organized in a tabular way.

To edit your crontab and set up jobs, use crontab -e . This command brings
up a file with a lot of comment lines, which should be left in the file to help future
you.

# Edit this file to introduce tasks to be run by cron.
#
# Each task to run has to be defined through a single line
# indicating with different fields when the task will be run
# and what command to run for the task
#
# To define the time you can provide concrete values for
# minute (m), hour (h), day of month (dom), month (mon),
# and day of week (dow) or use '*' in these fields (for 'an
y').#
# Notice that tasks will be started based on the cron's system
# daemon's notion of time and timezones.
#
# Output of the crontab jobs (including errors) is sent through
# email to the user the crontab file belongs to (unless redirec
ted).
#
# For example, you can run a backup of all your user accounts
# at 5 a.m every week with:
# 0 5 * * 1 tar -zcf /var/backups/home.tgz /home/
#
# For more information see the manual pages of crontab(5) and c
ron(8)
#
# m h  dom mon dow   command

30 20 * * 4 /home/george/autobackup.sh

The last line is the actual specifics for crontab . First, the date and time that the
command should be executed is specified. It follows minute | hour | day of month |
month | day of the week. The example has this set up to run every Thursday (day
4) at 8:30 pm. The week starts with 0 or 7 assigned as Sunday. The asterisks are

crontab: a Scheduling Tool PDF last generated: February 23, 2020

Intoduction to UNIX User Guide Page 54



essentially an “it doesn’t matter” measure. Finally, the script and location to be
executed, which in this case is a script titled autobackup.sh in George’s home
folder, is specified.

Other flags for crontab include -l , which lists the information in your crontab,
and -r , which removes and unschedules crontab jobs. Additionally, those with
sudo (page 101) power can set up, list, and remove the crontab of other users
by specifying their username in the command.

$ sudo crontab -u steve -e

Autobackup script
The following is the example script used in the crontab section:

#/bin/bash

NOW=$(date +"%m_%d_%Y")
cp -r ~/Research /media/george/Seagate\ Expansion\ Drive/Backup
s/
tar -cjvf /media/george/Seagate\ Expansion\ Drive/Backups/Resea
rch_$NOW.tar.bz2 /media/george/Seagate\ Expansion\ Drive/Backup
s/Research/

What happens is that the variable NOW is set as the current date and time. Then,
the Research folder is copied to the external device. Then, that folder is
compressed into a tarball (page 42). After creation, this file needs to be made
executable with chmod u+x autoback up.sh (page 123).

Secondary Autobackup Script
This regular autobackup script is helpful if you have a mounted drive with spaces
in the name. One of the things it does is it copies the entire folder as normal to the
hard drive, and then adds a secondary compressed folder. For a 1TB hard drive
with a 1TB external, that is not going to work. Therefore, I personally would
suggest renaming your external device. First, plug the device into the computer.
Then, use mount (page 112) and locate the device’s name. A lot of information will
come on screen, but you’re looking for a specific line (which is shown below).

Autobackup script PDF last generated: February 23, 2020

Intoduction to UNIX User Guide Page 55



$ mount
/dev/sda1 on /media/georgina/Seagate\ Expansion\ Drive/ type fu
seblk (rw,nosuid,nodev,relatime,user_id=0,group_id=0,default_pe
rmissions,allow_other, blksize=4096,uhelper=udisks2)

The mounted device is listed with both it’s device location /dev/sda1 and it’s
more human-readable location and name /media/georgina/Seagate\

textbackslash{} Expansion\textbackslash{} Drive/ . Assuming that the
drive is in NTFS format (again, please head to the mount (page 112) section), then
an administrator can use the nstflabel command to rename the device using
underscores.

$ sudo ntfslabel /dev/sda1 Seagate_Expansion_Drive

This removes errors in running the script due to spaces (because computers hate
spaces in names (page 14)). Finally, we are ready to create the run script!

#/bin/bash

# Backup destination
backdest="/media/georgina/Seagate_Expansion_Drive/Backups"

#Labels for backup name
type="Research"
NOW=$(date +"%m_%d_%Y")
backupfile="$type-$NOW.tar.bz2"

cd $backdest
tar -cvpzf $backupfile /home/georgina/Research

Two things to note here. The first is that we change directories to a specific
location in this script, so that tar (page 42) can be used from there. Second, we
are using a .bz2 file extension. You can use a .gz if you wish (it’s faster), but
.bz2 will compress the files more (and we went through this process to ensure

there was enough space). Remember, once this script is created, it needs to be
made executable through something like chmod u+x autobackup-tar.sh (page
123).

Autobackup script PDF last generated: February 23, 2020

Intoduction to UNIX User Guide Page 56



vi editor
The vi editor is a “VIsual” text editor. To open something named
fake_document.txt in this editor, use

$ vi fake_document.txt

This editor can also be used to create new files. In place of the name of a current
file, use a new name you would like the file to be named. To insert text/numbers/
commands within the editor, type i to bring up “insert” mode. To quit vi , there
are two options. The first is to quit with saving. For this option, hit escape before
typing :wq , meaning “write quit.” The second is to quit without saving. For this
option, hit escape before typing :q! , meaning “quit.” Additionally, to save
without quitting, you can use :w . There are other modes, such as replace,
macros, and visual, which you can research on your own.

The “undo” button is not cntrl+Z (page 48), since that has already been taken for
suspense (ha). Instead, undo is :u . Practically, this is Shift+;+u , since colon is
an uppercase symbol.

Another useful feature from within the visual editor is Shift+G . [Note: The +
stands for “and” here.] This will bring you to the end of the file you’re viewing.
Practically, hit escape before typing :+Shift+G , which will leave whatever mode
you’ve entered before bringing you to the end. Additionally, to move through the
file in vi, several letters can be used in place of arrow keys. These are H (left), J

(down), K (up), and L (right).

In vi , you can use Cntrl+G to which line of how many lines your cursor is
current on. This be used to tell you how long the file that you’re viewing is. To
delete lines, you can specify a number and then dd . So 22dd would delete 22
lines starting with the line your cursor is on. A single dd will delete the line your
cursor is on.

If you need line numbers, you can turn them on with :set nu or :set number .
They can be turned off with :set nu! or :set nonumber . You can turn on
hidden characters with :set list and turn them off with :set nolist .

If you’re using a Linux system, there is a good chance that your system
administrator has installed the gedit text editor , which can be opened from the
command line through gedit filename . It is a lot easier to navigate for files that
need a massive overhaul, but there are definitely circumstances where vi has
uses (* cough supercomputers and jobfiles cough *).

vi editor PDF last generated: February 23, 2020

Intoduction to UNIX User Guide Page 57

https://help.gnome.org/users/gedit/stable/index.html.en


Searching Files
To search a file in the vi (page 57) editor, use / . First, use escape to enter any
mode that you’re in. Then, type the forward slash before the text that you’re
searching for, and hit enter. This will bring you the the appearance of the string
you’re looking for.

Using the keyboard shortcut Cntrl+B allows you to go back when doing a string
search with / .

Searching Files PDF last generated: February 23, 2020

Intoduction to UNIX User Guide Page 58



Search and Replace All
Similarly to find and replace all in Microsoft products, you can use :\%s to
search and replace in the vi (page 57) editor. Practically, to search for
gobbledygook and replace it with balderdash in your file, first hit escape

before typing :\%s/gobbledygood/balderdash/g and hitting enter. The g

makes it global (meaning every instance is changed).

Search and Replace All PDF last generated: February 23, 2020

Intoduction to UNIX User Guide Page 59



Commenting Out
Something that makes scripting and file editing easier when an outsider is reading
them are comments. Comments enable more detail about a code for anyone crazy
enough to want to understand it. Basically, a comment is something that the
computer knows to skip reading, so it can contain anything. Some lines that have
been “commented out” are important, like the beginning line of a bash script.
Other times, they could be deleted from the code without any affect. The symbol
to specify that a comment is forthcoming is # . A comment ends when return has
been hit. The below script shows things that have been commented out.

def is_cool (name) : #def stands for define
return (name == "I")

def person(name):
if is_cool(name):

print name, "am cool." #print will print som
ething to the screen

else:
print name, "are not cool."

person("I") #Ah, look at these variables! You can see wha
t I'm going for.
person("You")

Something helpful that some systems will do is that they color comments, so you
can actually tell that they’ve been commented out. Python does this, which is why
that example had gray # lines.

Commenting Out PDF last generated: February 23, 2020

Intoduction to UNIX User Guide Page 60



less: Safe Viewing
Because with vi (page 57) there is a potential for data loss or overwriting, you may
wish to have a “safe” way to view files. Viewing files with less does just that. The
command syntax is

$ less filename

To quit less mode, you can use q , Q , :q , :Q , or ZZ . You can also invoke a
search for patterns with / , typing the pattern, and hitting enter. If you
accidentally type a slash, you can just backspace until it is gone. Page navigation
can be done through the arrow keys, in addition to page up using b (for back)
and page down with the space bar. Like with vi (page 57), typing Shift+G will
bring you to the end of the file.

The man (page 93) page provides a lot more information on less mode.

less: Safe Viewing PDF last generated: February 23, 2020

Intoduction to UNIX User Guide Page 61



more: Minimalist Safe Viewing
Oddly enough, the phrase “less is more” is true in Unix systems. The more

command is an older “safe” way to view files. You cannot scroll like by line with
arrow keys, like with less (page 61), nor can you search for strings with / .

more: Minimalist Safe Viewing PDF last generated: February 23, 2020

Intoduction to UNIX User Guide Page 62



touch
The touch program will create empty files. While empty files seem overly
useless, it can be critical for installing and compiling programs. Creating files
follows the syntax

$ touch [options] filename

Using the -m flag will allow you to update the timestamp on the file. Some
clusters or supercomputers will auto-delete files that have been unmodified in a
previous timespan, so using touch -m to modify the timestamp can be used to
prevent those deletions. [Note: some clusters/supercomputers specifically ban
doing this, so if that’s the case… don’t.]

touch PDF last generated: February 23, 2020

Intoduction to UNIX User Guide Page 63



echo
The echo command prints text to the screen. It’s incredibly useful in scripting, as
it can be used to demonstrate how far along a script has gotten during the run
through printing statements or the time. echo can also print variable locations to
the screen, so if you need to access that location without using the variable name,
you don’t have to search your hidden files.

$ echo $AMBERHOME
/usr/local/amber18

echo PDF last generated: February 23, 2020

Intoduction to UNIX User Guide Page 64



> and >>: redirecting output
For many commands (or even programs), the standard response when they are
run is to print the output to the Terminal. Instead of this, putting the greater than
sign ( > ) in your command can force the output to go to a new file. There are two
choices for this. The first is a single > , which will redirect to a file and overwrite
the output. The second is having two ( >> ), which will redirect output to a file, but
append the redirected output (i.e. it’ll just attach the new to the end of the old).

$ echo "ECHOOOOOOOOOOOOOOOO"
ECHOOOOOOOOOOOOOOOO
$ echo "ECHOOOOOOOOOOOOOOOO" > call_and_response.txt
$ cat call_and_response.txt
ECHOOOOOOOOOOOOOOOO

And, what’s that, a cat (page 66)? What an intro to the next section!

> and >>: redirecting output PDF last generated: February 23, 2020

Intoduction to UNIX User Guide Page 65



cat (and tac)
The cat command can be used to print the contents of a file to the Terminal.

$ cat fake_file.txt
cat
dog
fish
elephant

The similar command, tac , will print the lines in reverse.

$ tac fake_file.txt
elephant
fish
dog
cat

cat (and tac) PDF last generated: February 23, 2020

Intoduction to UNIX User Guide Page 66



awk
The awk language is useful for whittling down data from a mega-file to a more
manageable file. Basically, instead of columns A-Z with different information, you
could select out which letters would be of importance to you. The command can
even be used to select values greater than or less than different cutoffs, which can
make data analysis faster. The information shown below is from a complete file
with 24,525 rows of data.

CHR             SNP   A1   A2          MAF  NCHROBS
21      kgp2850918    C    A      0.03691      298
21      kgp4753447    A    G      0.03716      296
21      kgp6829524    A    G      0.06419      296
21     kgp13210339    A    C      0.05667      300
21     kgp10927414    A    G      0.06419      296
21     kgp10658468    A    G      0.06667      300
21      rs10439884    A    G         0.08      300

Using awk can select MAF values from a specific cutoff. In the awk line below,
the header is printed through NR == 1 (NR stands for number of records; NF
would stand for number of fields and refer to columns), and the remaining data is
sorted through column 5 ( $5 ) to select out values below 0.05. Then, a new file is
created using > with the new file name specified.

$ awk 'NR == 1; NR > 1 {if ($5<0.05) print}' plink.frq > plink
awk.frq

The new opening lines of this now 350 row file are:

CHR             SNP   A1   A2          MAF  NCHROBS
21      kgp2850918    C    A      0.03691      298
21      kgp4753447    A    G      0.03716      296
21      kgp5439554    A    G      0.04667      300
21      kgp9921880    G    A      0.04333      300
21     kgp13121553    G    A         0.03      300
21      kgp1799905    A    G      0.04667      300
21      kgp4273039    A    C       0.0473      296

awk PDF last generated: February 23, 2020

Intoduction to UNIX User Guide Page 67



If, for example, you only wanted to print four specific columns of information to
the Terminal (and not a separate file), a command like

$ awk '{print $1, $2, $3, $9}' mega_data_set.dat

could be used.

awk PDF last generated: February 23, 2020

Intoduction to UNIX User Guide Page 68



diff
You can check for differences line by line in files using the diff command. First,
let’s examine these two files using cat (page 66).

$ cat example-file.txt
cat
dog
fish
elephant
monkey
snake
insect
spider

$ cat other-file.txt
cat
dog
fish
elephant
money
snakey wakey
insect
spider

There are two points of difference, which can then be identified with diff .

$ diff example-file.txt other-file.txt
5,6c5,6
< monkey
< snake
- - -
> money
> snakey wakey

Notice, that even though line 6 had snake , the difference was flagged because
the entire line didn’t match.

diff PDF last generated: February 23, 2020

Intoduction to UNIX User Guide Page 69



grep
The command line program grep recognizes matching patterns. An example
what grep can do is shown through the following line. In the line, the -e flag
tells the program to search for patterns starting with special characters, the \|

(which is a pipe (page 86)… more on that later) allows multiple things to be found
(essentially an “or” feature), and the > directs the output to a new file. The whole
slew of what you’re looking for should be in open quotes.

$ grep -e '^ATOM\|^HETATM\|^TER\|^END' 1A31_cleanup_o.pdb > 1A3
1_cleanup_o2.pdb

If you used something like

$ grep 'word*' *.txt

then all of the matching lines starting with “word” found in text files would be
printed to the Terminal.

grep PDF last generated: February 23, 2020

Intoduction to UNIX User Guide Page 70



paste
You can combine multiple files together using the paste command. If you have a
file named numbers.txt (that’s literally just a list of numbers) and a file you’d like
numbered (say greatcities.txt ), then you can use the below to give you the
list printed to the terminal.

$ paste numbers.txt greatcities.txt
1        Heidelberg
2        Chicago
3        New Lenox
4        Denton
5        Kirksville

Obviously, you can use > (page 65) to direct the output to a new file. It is also
good to note that default paste use will create the output with a tab delimiter.
Changing delimiters can be done through the -d flag.

paste PDF last generated: February 23, 2020

Intoduction to UNIX User Guide Page 71



sort
You can sort data with the sort command (amazing!). First, use cat (page 66) to
print the data.

$ cat data.txt
134
127
108
89

185
...

Then we can use sort . By default, the data will be sorted in ascending order.

$ sort data.txt
2
3

53
56
74
...

The -r flag can be used to arrange the values in ascending order, and the -R

flag can be used to arrange the values randomly. Thus, the flags are case
sensitive.

sort PDF last generated: February 23, 2020

Intoduction to UNIX User Guide Page 72



$ sort -R data.txt
94

152
185
105
143
...
$ sort -r data.txt
227
218
213
209
208
...

The command can also be used on files with words or letter, where the default is
alphabetical order.

$ cat words.txt
research
graduate
office
hope
pain
...
$ sort words.txt
chemistry
doctor
education
graduate
hope
...

sort PDF last generated: February 23, 2020

Intoduction to UNIX User Guide Page 73



split
Sometimes files are egregiously large and are downright unmanageable to look at.
The split command can be used to break large files into smaller components,
while keeping the original file intact.

Some split options include capping at a line number (shown with the -l5 flag,
where there are 5 max lines per file created), specifying the output name prefix
(shown as newname_ ), and made verbose, which shows the names of the newly
created files.

$ split -l5 example_file newname_ --verbose
creating file 'new_aa'
creating file 'new_ab'
creating file 'new_ac'
creating file 'new_ad'
creating file 'new_ae'

There are other options, too. -d will give the new files a numeric suffix, such as
00 , instead of aa . Byte sizes can be specified following the pattern in the table

(page 74), where the number is what you want the max file size to be.
Alternatively, you can split it into a set number of chunks with something like -n5

(where it’d be broken into 5 chunks).

Example flags for split byte sizes
| Flag | Max File Size | |———-|——————-| |-b2000000 | 2000000 bytes | |-b
50K | 50 kilobytes (KB) | |-b 50M | 50 megabytes (MB) | |-b 1G | 1 gigabyte (GB) |

split PDF last generated: February 23, 2020

Intoduction to UNIX User Guide Page 74



sed
In the 1970s, sed , a Stream EDitor, was created. sed reads files line by line, is
mainly used for search and replace, and doesn’t edit the input file by default
(instead printing the information to the screen). The options for sed change with
each operating system, so I’ll stick the the options for GNU (“GNU’s Not UNIX”,
aka the precursor to Linux and what Linux systems use).

Generic sed commands follow the syntax of:

$ sed 'script' input_file

So, if you wanted to search for every instance of the word “hello” and change it to
“world” in a file named input.txt , creating a new file with those changes called
output.txt , then the command would look like

$ sed 's/hello/world/g' input.txt > output.txt

If you wanted these changes to be reflected in the original file by overwriting it,
then you would instead use the -i flag, which edits in-place.

$ sed -i 's/hello/world/g' input.txt

In these examples, the s/ stands for search and the g stands for global;
together they are the equivalent of “find and replace all.” Not including the g will
make turn an example.txt file like

__hello__ my dearest friend __hello__
my deepest __hello__ unto you
can you reply to __hello__ with __hello__
I only say __hello__ to myself

into this

sed PDF last generated: February 23, 2020

Intoduction to UNIX User Guide Page 75



__world__ my dearest friend __hello__
my deepest __world__ unto you
can you reply to __world__ with __hello__
I only say __world__ to myself

because, once again, sed makes changes line by line. Similarly, sed is not
recursive, so you can globally replace a word with a phrase containing the world
multiple times without causing an infinite loop.

Now, single quotes are not always critical to the use of sed , but they won’t hurt
anything either. Basically, they’re necessary for meta-characters (aka anything you
shouldn’t include in a file name (page 14)). Thus, since nobody understands sed ,
and the people writing sed documentation suggest using single quotes every
time, you should just learn sed using single quotes every time.

You can also delete lines with sed . To edit a file by removing the first line, then
you would use

$ sed -i '1d' filename

In the example, 1d essentially stands for first line deletion.

Using a\ (“append”) can add lines to a file.

$ sed '/hello/ a\ Add this line after every line with hello' ex
ample.txt
hello my dearest friend hello
Add this line after every line with hello

my deepest hello unto you
Add this line after every line with hello

can you reply to hello with hello
Add this line after every line with hello

I only say hello to myself
Add this line after every line with hello

You can “insert” lines with i\

sed PDF last generated: February 23, 2020

Intoduction to UNIX User Guide Page 76



$ sed '/hello/ i\ Look at me go' example.txt
Look at me go

hello my dearest friend hello
Look at me go

my deepest hello unto you
Look at me go

can you reply to hello with hello
Look at me go

I only say hello to myself

or “change” lines with c\

$ sed '/my/ c\ well this was dumb' example.txt
well this was dumb
well this was dumb

can you reply to hello with hello
well this was dumb

These commands can easily be created into a script for editing files. Say you
wanted to delete the CRYST line from all the PDB files in a folder. Hmmm, it’s
almost like VMD hates this line from Avogadro-generated files. To do this, you
could write a script like:

#!/bin/bash
sed -i '/CRYST/ c\' *.pdb

If you have symbolic links (see ln (page 98), you can have sed follow the
symbolic links. To do that, use something like:

$ sed -i --follow-symlinks 's/^/\t/' *.txt

In that example, a tab ( \t ) is inserted at the beginning of each line ( ^ ) of every
.txt file, including following through to the referenced files of symbolic links.

Finally, old versions of sed only allowed the first line of a script to be a comment,
but now comments can be used anywhere in the script, though to be safe they
should be entered on their own line of the script.

More information on sed is available here and here .

sed PDF last generated: February 23, 2020

Intoduction to UNIX User Guide Page 77

https://avogadro.cc/
https://www.gnu.org/software/sed/manual/sed.html
http://www.grymoire.com/unix/sed.html


convert
 Note: This section will really only be helpful on Linux systems, but
considering these things are covered through other means on other
operating systems, it’s not the end of the world.

Converting between image formats can be a pain or require a photo editor. Luckily
enough, convert can be used to do it! The command syntax is

$ convert [input options] old_image [output options] new_image

For instance, you can resize images through something like this (obviously
800x600 is not the only option)

$ convert imagename.jpg -resize 800x600 newimagename.jpg

Some other options include -rotate degree_number and -crop x{+-}{+-

}{%} .

If you’re on a system without ImageMagick, consider downloading it to get this
command.

convert PDF last generated: February 23, 2020

Intoduction to UNIX User Guide Page 78

https://imagemagick.org/


eog
 Note: This section will really only be helpful on Linux systems, but
considering these things are covered through other means on other
operating systems, it’s not the end of the world.

To open image files from your Terminal, you can use the eog command. Using
eog image_file_name will open the image in a new window. Once the image is

closed, you can resume using that same Terminal.

eog PDF last generated: February 23, 2020

Intoduction to UNIX User Guide Page 79



evince
 Note: This section will really only be helpful on Linux systems, but
considering these things are covered through other means on other
operating systems, it’s not the end of the world.

While eog (page 79) can be used to open images, the evince command can be
used to open PDF files. Using evince file.pdf will open the PDF in a new
window. Once the file is closed, you can resume using your Terminal window for
running commands.

evince PDF last generated: February 23, 2020

Intoduction to UNIX User Guide Page 80



Cntrl+A: Begin Again
This command allows you to move the cursor to the beginning of the command
prompt that you were typing. This is helpful because you cannot simply click to
where in the command you would like to fix; arrow keys must be used to
maneuver around prompts.

Cntrl+A: Begin Again PDF last generated: February 23, 2020

Intoduction to UNIX User Guide Page 81



Cntrl+L: CLEAR!
The Terminal screen can become cluttered with old prompts and printed content.
To clean it up (if only for a moment), use Cntrl+L.

Cntrl+L: CLEAR! PDF last generated: February 23, 2020

Intoduction to UNIX User Guide Page 82



Cntrl+R: History's Pal
While history (page 97) will bring up a log of past commands, using Cntrl+R will
allow you to search through old commands. When I search for “qsub” on
insert_computer_cluster, my most recent submission involving “qsub” appears. I
can continue going through previous options using Cntrl+R again.

(reverse-i-search)\`qsub\': qsub basher.sh

Pressing an arrow key will bring you out of the search and back to the command
prompt, so you can edit the command before executing. As always, Cntrl+C (page
47) will end the search.

Cntrl+R: History's Pal PDF last generated: February 23, 2020

Intoduction to UNIX User Guide Page 83



Cntrl+U: Clear the Line!
Sometimes the command you’ve typed into the Terminal’s command prompt is
just wrong and you want to undo all the typing without deleting it. To clear the
prompt, use Cntrl+U.

Cntrl+U: Clear the Line! PDF last generated: February 23, 2020

Intoduction to UNIX User Guide Page 84



Tab: the Autofill Key
If you’ve ever written a paper, then you know that the Tab key exists on a
keyboard. This key is a lazy Terminal user’s best friend, because it acts as an
autofiller for unique names. Say you want to open
theWorldsLongestDatasetwiththeWorldsLongestName.dat . First, that name is

really long. Second, there’s a lot of weird capitalization. Say that there are a few
file names in the same directory that start with “the,” but none of them start with
“theW.” Thus, you can type vi theW and hit the tab key. Suddenly, what you’ve
typed is now vi theWorldsLongestDatasetwiththeWorldsLongestName.dat ,
and you can hit enter to view the file. The tab key can also be used to bring you to
the next point of difference, in addition to finishing commands or program names.
If I type just whi , then hit tab twice, the Terminal will list the two things that start
with whi , which are the which and while commands. Thus, by then typing a
c or l , and hitting tab once more, I will have the completed command. This is a

great help if you know how a file name starts, but don’t remember its unique
breaking point.

Tab: the Autofill Key PDF last generated: February 23, 2020

Intoduction to UNIX User Guide Page 85



The Pipe
There’s something on the keyboard that looks like a straight line or a weird colon
that shares the key with \ , and that thing is called a pipe ( | ). Use of a pipe
allows you to combine multiple commands into a single line, and “piping” allows
you to use the output of a command as the input of the following command. To
use it in the command, hit Shift+\ . One of my most commonly used pipe
commands is:

cat rmsd_all.dat | awk '{print 0.1*$1, $2}' > new_rmsd_protei
n.dat

That command prints out the information from the data file, then prints out only
the two columns I want and places it in a new file.

Gaze upon the pipe (`|`).

The Pipe PDF last generated: February 23, 2020

Intoduction to UNIX User Guide Page 86



*: Wildcards
No, we’re not playing UNO. Wildcards are what asterisks are called, because they
have many functions, including making lives easier. Say you want to copy every
file that has the same extension (like .txt ) from a folder. To do that, you can do
something like

$ cp *.txt /path/to/other/directory/

Each file will have the same name as it did in the original directory. Similarly, all
the .txt files from a folder can be permanently deleted with

$ rm *.txt

If you wanted to list everything that had the .txt extension, then you would use

$ ls *.txt

I’m sure you can see how wildcards are helpful. The only other useful thing that I’ll
mention here is that if you had things that were the same at the beginning and
end, you can use a wildcard for their point of difference. So something like
All_These_<sup>\*</sup>Files.txt would pertain to anything under those

conditions, such as All_These_Bloody_Files.txt or
All_These_Silly_Files.txt .

*: Wildcards PDF last generated: February 23, 2020

Intoduction to UNIX User Guide Page 87



date, cal, and time

date
No, you’re not asking the Terminal out with the date command. You’re simply
asking what time and day it is.

$ date
Thu Mar  8 21:11:04 CST 2018

cal
Like date, you can print a calendar to the terminal with cal . The current date is
highlighted.

$ cal
March 2018

Su Mo Tu We Th Fr Sa
[1]  2  3

4   5  6  7   8  9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30 31

time
The time command can be used to give information about the time a command
or process takes to run. It has a man page, which is kind of elusive on bash
systems, as time is a builtin (within the shell) there.

If you want to figure out how long a command takes to execute (like scp (page
35), for example), you can use the following (where command is the command
you’re testing). Bash shell on Ubuntu:

date, cal, and time PDF last generated: February 23, 2020

Intoduction to UNIX User Guide Page 88



$ /usr/bin/time -p command
0.00user 0.00system 0:00.00elapsed 0%CPU (0avgtext+0avgdata 243
2maxresident)k
0inputs+0outputs (0major+103minor)pagefaults 0swaps

Bash shell on Mac OSX:

$ /usr/bin/time -p command
---

0.00 real         0.00 user         0.00 sys
$ time command
real        0m0.017s
user        0m0.003s
sys        0m0.008s

time PDF last generated: February 23, 2020

Intoduction to UNIX User Guide Page 89



head
The command head can be used to print the first few lines of a file. The default
use of head with print the first 10 lines of the file, but a flag can be used to print
more or fewer lines.

$ head -n 25 fake_data_file.txt

Use of -n 25 will print the first 25 lines, as opposed to the original 10. Otherwise,
default use would be:

$ head fake_data_file.txt

head PDF last generated: February 23, 2020

Intoduction to UNIX User Guide Page 90



tail
Like head (page 90), tail can be used to print the final lines of a file. It also will
use 10 lines as the default, which can be changed with the -n flag.

tail PDF last generated: February 23, 2020

Intoduction to UNIX User Guide Page 91



file
The file command can be used to print the format of the data within a file. In
this example, the data is a binary NetCDF file. Using cat (page 66) to print the file
would make it look like a monster trying to escape the terminal.

$ file trajectory_info.nc
trajectory_info.nc: data

For this one, the file is a text file that is easily printed using cat (page 66).

$ file trajectory_info.mdcrd
trajectory_info.mdcrd: ASCII text

file PDF last generated: February 23, 2020

Intoduction to UNIX User Guide Page 92



man Pages
Despite their name, man pages are for people of all genders. Commands have
manual entries that can be accessed through their man pages (see top (page 43)).

Example use of `man gzip`, which describes the gzip command. This
command unzips zip folders.

To exit a man page, type q for quit or ZZ .

man Pages PDF last generated: February 23, 2020

Intoduction to UNIX User Guide Page 93



find
If you’re like most people, using Cntrl+F is the way you live your life. While Cntrl+F
isn’t something you can use through the command line, you can use find . In
general, the command syntax is find [path] expression . So, to find
something with “README” anywhere in the filename from the folder you’re using
the command in, you would use something like:

$ find . -name *README*

There are many other options, all of which are readily Google-able or found
through the man (page 93) page.

find PDF last generated: February 23, 2020

Intoduction to UNIX User Guide Page 94



locate
Like find (page 94), locate can be used to search for files by name. With
locate , however, you need not have to include the entire file name; it will search

for parts of names. Using locate will search your entire computer system, so it
can take a significant amount of time depending on specificity and number of files.
The general syntax is locate [options] name , where options like the -i flag
will make the search case insensitive.

locate PDF last generated: February 23, 2020

Intoduction to UNIX User Guide Page 95



wc
The wc command will find the word count of a file. It has several different flags
that make it helpful for determining how big files are. These include

• wc -w : gives the word count

• wc -l : gives the line count (the last line won’t be counted if \n isn’t
included)

• wc -m : gives the character count

• wc -c : gives number of bytes

wc PDF last generated: February 23, 2020

Intoduction to UNIX User Guide Page 96



history
Unix shells keep a log of your previously run commands (that’s how the up arrow
function works). To print your history, use history number , where the number
specifies how many lines to print (the default is to print your entire log, since the
last system restart).

[euid123@t3-login1 ~]$ history 10
896 exit
897 history 10
898 exit
899 ls
900 pwd
901  top
902 cd testingR/
903 ls
904 cd ..
905 history 10

history PDF last generated: February 23, 2020

Intoduction to UNIX User Guide Page 97



ln: Symbolic Links
Symbolic links are redirects to a specific file location. Instead of copying a file or
folder, you can just provide a link to that in your current working directory, which
saves disk space. They can also be used to make scripting easier. The command
to create a symbolic link is ln . The general syntax is:

$ ln -s actual_file symbolic_link

In the following example, a symbolic link is created for the example.txt file in
the home directory to appear on the Desktop . The entire file path for both the
origin file and the file’s symbolic link location must be specified. Then, from the
Desktop, ls -lthr is used to demonstrate the link is indeed a link, which is
specified by the -> }

$ ln -s ~/example.txt ~/Desktop
$ ls -lthr
lrwxrwxrwx 1 simon simon   24 Mar 21 11:03 example.txt -> /hom
e/simon/example.txt

Symbolic links can be removed by using rm (page 38) on the link. Specifying that
links are links in the link’s name may be helpful if you regularly get lost inside your
Terminal.

ln: Symbolic Links PDF last generated: February 23, 2020

Intoduction to UNIX User Guide Page 98



Aliases: for Efficiency and Laziness
Aliases are a powerful tool for the forgetful, the lazy, and the efficient. They take
commands that you commonly use and shorten them to a specified command.
They are created in hidden files, which are titled with a . due to the difficulty to
delete them. In your home directory ( cd ), list everything ( ls -a ) to show the
hidden files. There is likely something titled .bash_profile or .bash_aliases .
If so, open it with vi (page 57). If not, use vi .bash_aliases to create one.
[Note: if you’re not using a bash shell, look for a similar file for the shell you are
using.]

The easiest way to explain the alias, is by giving an example alias. Say you want to
make it easy to ssh to a computer. You want to just type comp . In this case,
make a line in the “.” file (make sure to do it after the #alias line if there is one!)
that looks like:

alias comp='ssh euid123@talon3.hpc.unt.edu'

and save by using :.wq .

Every time you update a .bash file, you need to tell the computer that you
changed something. You can do this in a few ways. The annoyingly long way
would be to restart your computer. Surely you can imagine why that would not be
ideal. The easy way is to source the file. Basically your computer is like “OH,
THAT’S NEW!” The following example will demonstrate that.

$ source ~/.bash_profile

You might be thinking to yourself, “Why is there a tilde?” In which case, I direct
you to the section on home directories (page 7).

Aliases: for Efficiency and Laziness PDF last generated: February 23, 2020

Intoduction to UNIX User Guide Page 99



Opening Additional Terminals from
Terminal
You can open additional Terminals (to the same directory) using system-specific
commands. On Ubuntu, use the gnome-terminal command. On a Mac OS X
running Sierra, use

open -a Terminal .

You can also use Cntrl+N on a Mac to open a new Terminal in the home
directory.

Opening Additional Terminals from Terminal PDF last generated: February 23, 2020

Intoduction to UNIX User Guide Page 100



sudo: Administrator Rights and
Installations
If you have administrator privileges, but are not the complete admin of everything
(i.e. the root user), then you are likely able to use sudo . If you run into issues
where you cannot use a command because permission has been denied, like in
this example,

[euid123@talon3 local]$ mkdir folder_of_doom
mkdir: cannot create directory \`folder_of_doom\': Permission d
enied

then you can try the command with sudo in front of it.

[euid123@talon3 local]$ sudo mkdir folder_of_doom

You will then be prompted for the sudo password. You get 3 tries to get it right
(like any use of a password except su (page 117)), and if not, then the instance “is
reported to the root user.” This is the same as when you try to use sudo without
the correct privileges.

 Note: Instances are reported in /var/log/auth.log for Ubuntu systems.

Why mention this at all, then, if you probably can’t use it? Because on your own
personal computer, or other systems where you are an administrator, you can use
sudo to install certain programs from the Terminal on machines with the pip

package management system of Python installed.

sudo: Administrator Rights and Installations PDF last generated: February 23, 2020

Intoduction to UNIX User Guide Page 101

https://packaging.python.org/tutorials/installing-packages/
https://packaging.python.org/tutorials/installing-packages/
https://imgs.xkcd.com/comics/incident.png
https://imgs.xkcd.com/comics/incident.png


*The Incident* from XKCD.

sudo: Administrator Rights and Installations PDF last generated: February 23, 2020

Intoduction to UNIX User Guide Page 102



free
You aren’t going to get a sample or anything with this command. However, free

will give you information on free, total and swap memory. Using the -t flag
shows the total memory used. The default for free is in bytes, but the -h flag
can put it in human-readable format.

$ free -th
total        used        free      shared  buff/c

ache   available
Mem:            15G        310M        4.3G         25
M         11G         14G
Swap:           15G          0B         15G
Total:          31G        310M         20G

free PDF last generated: February 23, 2020

Intoduction to UNIX User Guide Page 103



ifconfig
Let’s start with definitions: IP and MAC. IP stands for Internet Protocol, and is the
numeric number assigned to a computer network access the internet. MAC
stands for Media Access Control, and the address is the device’s unique identifier
for the network adapter. Determining IP and MAC addresses can be
accomplished through visiting /sbin/ifconfig . You don’t even need cd (page
21) to do it!

euid123@comp:~$ /sbin/ifconfig
enp0s31f6 Link encap:Ethernet  HWaddr 4c:cc:6a:30:f9:c6

inet addr:10.144.120.1  Bcast:10.144.120.255  Mask:25
5.255.255.0

inet6 addr: fe80::9d22:8f52:cb14:fb7f/64 Scope:Link
UP BROADCAST RUNNING MULTICAST  MTU:1500  Metric:1
RX packets:40194 errors:0 dropped:0 overruns:0 fram

e:0
TX packets:31924 errors:0 dropped:0 overruns:0 carrie

r:0
collisions:0 txqueuelen:1000
RX bytes:21634036 (21.6 MB) TX bytes:22810381 (22.8

MB)
Interrupt:16 Memory:df200000-df220000

lo        Link encap:Local Loopback
inet addr:127.0.0.1  Mask:255.0.0.0
inet6 addr: ::1/128 Scope:Host
UP LOOPBACK RUNNING  MTU:65536  Metric:1
RX packets:774 errors:0 dropped:0 overruns:0 frame:0
TX packets:774 errors:0 dropped:0 overruns:0 carrie

r:0
collisions:0 txqueuelen:1
RX bytes:69303 (69.3 KB) TX bytes:69303 (69.3 KB)

The initial text block enp0s31f6 contains information referring to the computer’s
Ethernet port. The MAC address is listed under HWaddr , and the IP address is
listed under inet addr .

ifconfig PDF last generated: February 23, 2020

Intoduction to UNIX User Guide Page 104



Installing Packages with a Package
Manager
Most Unix-like systems have a package manager that can be used to install
programs. This is typically done through:

$ sudo [command] install program_name

The command changes between operating systems, and obviously the program
name would change depending on what you are trying to install (a short list can be
found in the [table below][UNIXguide-package-manager-install.html#table]. The
operating systems using apt-get use different related commands in different
contexts. If you wanted to search available packages, these systems would use
the apt-cache base command instead. An initial search would be accomplished
through:

$ [command] search program

Table: Package managers for different
systems

Operating System Command

Ubuntu apt

Mint apt-get

Debian apt-get

CentOS yum

Red Had yum

Fedora dnf

macOS X macports (or brew)

Installing Packages with a Package Manager PDF last generated: February 23, 2020

Intoduction to UNIX User Guide Page 105



So, to search for and install a specific python on an Ubuntu system, you would
use

$ apt-cache search python
-{}-{}-hundreds of results returned-{}-{}-
$ sudo apt-get install python3.6

However, it is strongly recommended you update the available lists before you
install something, through the following (recognizing command is the system-
specific command).

$ sudo command update

For MacOS, you’ll probably want to install macports , brew , or fink . Depending on
what things you’ll be installing, you may need more than one of these.

Table: Package managers for different systems PDF last generated: February 23, 2020

Intoduction to UNIX User Guide Page 106

https://www.macports.org/
https://brew.sh/
http://www.finkproject.org/


Fully Removing Packages (and Kernels)
with a Package Manager
During program installations (page 105), there are dependent system components
that are also installed, that may be spread in various places throughout the
computer. Thus, to safely uninstall them, you would use

$ sudo [command] autoremove program_name

One area where this is critical is removing the old kernel (after testing the system!),
because the old kernel keeps a complete previous back-up, using valuable
system memory in /boot .

Fully Removing Packages (and Kernels) with a Package Manager PDF last generated: February 23, 2020

Intoduction to UNIX User Guide Page 107



Groups (a supplement to chmod)
To add people to a group, you need to know their username (imagine that). The
command to add mark to the grads group would be:

$ sudo usermod -a -G grads mark

The -a flag stands for append (or add) and the -G flag specifies that they should
be added to the group name following.

Checking Groups
To check who is included in a certain group (we’re going to stick with the grads

example), then you would use:

$ grep grads /etc/group

Which will give you back the usernames of everyone in the group.

Removing Users from Groups
Well, if you can add people, it’s only logical you can remove them too. To remove
mark from the grads group, you would use:

$ sudo desluser mark grads

 Warning: If you forget to include the group category in this command, you
will just… delete the user. That’s not good! Thus, a safer way to do this
would be through the “Users and Groups” window of the GUI (page 8), which
allows you to manage groups.

Groups (a supplement to chmod) PDF last generated: February 23, 2020

Intoduction to UNIX User Guide Page 108



last
To check user activity, and receive information such as reboot, boot, and kernel
version, you can use the last command. The kernel version is the central
component to the operating system, and is essential for memory, process, task,
and disk management.

$ last
charlie        pts/8                  10.144.120.7
4                    Wed Mar 21 09:20        still logged in
reboot        system boot          4.4.0-116-generi
Thu Mar 15 15:06        still running

last PDF last generated: February 23, 2020

Intoduction to UNIX User Guide Page 109



lsof stands for “list of open files.” Using this command, thus, gives a list of all
the open files. Often crazy, ridiculously-named things are being used by programs
and show up in top (page 43), so using lsof can show where those files
originate.

$ lsof
lsof   5982    root  mem     REG      8,18    2981280   5085636
7 /usr/lib/locale/locale-archive
lsof   5982    root  mem     REG      8,18     138696    498141
7 /lib/x86_64-linux-gnu/libpthread-2.23.so
lsof   5982    root  mem     REG      8,18      14608    498142
0 /lib/x86_64-linux-gnu/libdl-2.23.so

You can also specify usernames with lsof -u username .

PDF last generated: February 23, 2020

Intoduction to UNIX User Guide Page 110



Mail
Mail in UNIX is both a command for sending emails, and a user file that acts as an
inbox for system messages.

Checking Mail
The mail spool is located at /var/spool/mail/username (where username is
your username), and is a file that can be opened with vi (page 57) (or other file
viewing commands).

Sending Mail
You can send mail to users (or email addresses, if you’ve gone through the work
of configuring it….) through

$ mail euid123@their.system.email.com

Typically, the system email involves their username and hostname (so on Talon3 it
would resemble euid123@talon3.hpc.unt.edu ). Some options include the -r

flag that can be used to specify the “from” address, -b for blind carbon copies,
-c for carbon copies, and -s "Mail Subject" to specify the subject (in

quotes).

Mail PDF last generated: February 23, 2020

Intoduction to UNIX User Guide Page 111



mount
The mount command is used to attach the file directory of a device to the Linux
operating system’s directory tree. Using the generic mount will list all of the
mounted devices, which is helpful if you need to rename a device (we’ll get to that
in a little bit).

Actually mounting devices (outside of “plug it in”) requires an administrator, and
can be done through something like

$ sudo mount /dev/sda1 /mnt

This will mount it to the /mnt folder. Unmounting devices is done through
something either of

$ sudo unmount /mnt
$ sudo unmount /dev/sda1

Mount also has a --move flag, which displays information in a different place.

$ sudo mount --move /mnt/Files/Research /home/user/Research

Just plugging in devices assigns them a /dev name. The device’s visible name
(ex: Mike_USB_2012) would be found in the file system from the /media/

username folder.

 Note: Mac likes to put devices in /Volumes.

Each user’s media folder is automatically created when they plug in a device.

Now, mounted devices are formatted different ways. To change their assigned
name, you’ll need to know their formatting type. To change their formatting upon
use (which will wipe the device), the easiest way is to do it through the GUI (page
8), by right-clicking the name and choosing Format . A list of formatting types is
shown in the table below (page 113).

mount PDF last generated: February 23, 2020

Intoduction to UNIX User Guide Page 112



Table: List of device formatting types
Type Description

NTFS “New Technology File System” – the default for modern Windows-
compatible external hard drives. The only limit is the size of the drive,
so you could have a single file taking up the entire memory of the ex-
ternal device. Unfortunately, NTFS is read-only for Mac and some Lin-
ux distributions.

FAT32 “File Allocation Table” – the oldest file system in computing. Remem-
ber floppy discs? They’re worth a Google if you don’t. FAT32 allows
files up to 4GB in size, so you can see why you wouldn’t want this for
an external.

exFAT A FAT32 derivative. Ever used a digital camera? This is the common
default for memory cards. The issue with it is that since it’s propri-
etary, Microsoft limits its usage by license obligations.

ext2,
ext3,
and
ext4

“Second/Third/Fourth Extended Filesystem” – built for compatibility
with the Linux kernel. It’s the default for several Linux distributions.
The system lacks a journal and is ideal for SD cards and USB flash
drives on Linux systems.

HFS+ “Hierarchical File System +” – this is the Mac OS Extended format. As
you can probably guess, it’s what Mac’s use. When you use an exter-
nal device on a Mac, 9/10 times it needs to be wiped and reformatted
to this format.

NTFS is likely the default formatting type. Each formatting type has a different
command to rename a mounted device. For NTFS, that command would follow:

$ sudo ntfslabel /dev/sda1 new_name_of_device

where /dev/sda1 is the device tag associated with the device, found through the
standalone mount command. The device will need to be unmounted to change
its name though, which can be done either using unmount or through clicking the
up-arrow-esque eject button from the directory window.

For FAT32, the command would be (including the two colons):

Table: List of device formatting types PDF last generated: February 23, 2020

Intoduction to UNIX User Guide Page 113



$ sudo mlabel -i /dev/sda1 ::new_name_of_device

For ext2/ext3/ext4, the command would be:

$ sudo e2label /dev/sda1 new_name_of_device

Table: List of device formatting types PDF last generated: February 23, 2020

Intoduction to UNIX User Guide Page 114



ping
One way to check that computers are online (or responsive) is through ping . This
command demonstrates how much information (packets) is transmitted and how
many are received. If both transmitted and received have the same number, then
the computer is online and accessible.

euid123@computer1:~$ ping computer2
PING computer2 (10.144.120.1) 56(84) bytes of data.
64 bytes from computer2 (10.144.120.1): icmp_seq=1 ttl=64 tim
e=0.457 ms
64 bytes from computer2 (10.144.120.1): icmp_seq=2 ttl=64 tim
e=0.486 ms
64 bytes from computer2 (10.144.120.1): icmp_seq=3 ttl=64 tim
e=0.380 ms
^C
--- computer2 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 1998ms
rtt min/avg/max/mdev = 0.380/0.441/0.486/0.044 ms

To get out of ping , Cntrl+C (page 47) must be used. If the computer isn’t on the
same network, then a hostname issue will be returned. If the computer is offline,
an “unreachable” message will be returned.

ping PDF last generated: February 23, 2020

Intoduction to UNIX User Guide Page 115



reboot
Occasionally, you’ll need to reboot (restart) a computer through the command line.
Believe it or not, there are multiple death screens before the blue screen of death
(cough the black screen with white underscore cough), which make it difficult to
safely reboot a computer. Thus, through a Terminal via ssh (page 17), you can use

$ sudo reboot

and enter the sudo password. The connection will automatically disconnect, which
makes sense because it is restarting. It is always a good idea to use top (page 43)
and nvidia-smi (page 49) (if there’s a graphics card) to ensure that other users are
not in the middle of important jobs or processes. The polite thing in that situation
would be to ask if you can reboot, and then proceed with rebooting.

reboot PDF last generated: February 23, 2020

Intoduction to UNIX User Guide Page 116



su: Switch User
Say you’re helping someone on their computer, where you are also a user, and
want to access something like your .bash_profile in order to properly assist
them. Logging them out to log you in would be ridiculously frustrating, and
unfortunately no other computers are around for you to access the system
through an ssh connection. Never fear! To access your files through the
command line, without going through sudo 12 times, you can continue using the
Terminal as yourself after switching users. This is done through the su command.

alice@computer $ su bob
Password:

This time, you only get one attempt, before you get hit with “su: Sorry.”

It is worth noting that the default use of su without a specified user is to switch to
the root user. (You can read more about that in UNIX systems (page 7))

su: Switch User PDF last generated: February 23, 2020

Intoduction to UNIX User Guide Page 117



uptime
Computers (like humans) get finicky when they’ve been awake for a long time. To
check the amount of time that a computer has been online, use the uptime \
command.

$ uptime
8:37  up 8 days, 17:19, 2 users, load averages: 1.75 1.98 2.10

The response displays how long the system has been running, how many users
are currently logged in, and the load average for 1, 5, and 15 minute intervals.
Load average should ideally stay around 0.70*(number of CPU cores) for Linux
systems. A load average of 1.0 per core would essentially mean the system has a
full lane of traffic, and over 1.0 means there are cars stopped on the highway on-
ramp waiting for a chance into traffic. It is important to know that macOS’s load
averages act differently, so a completely idle system would show a load average
of 1.0. If things are amiss, check the Activity Monitor application.

uptime PDF last generated: February 23, 2020

Intoduction to UNIX User Guide Page 118



useradd
Root users can create new user accounts with

$ useradd -m newusername

The -m flag creates a home directory for the user (in this case newusername ).
Once the user is created, you must set a password through

$ passwd newusername

useradd PDF last generated: February 23, 2020

Intoduction to UNIX User Guide Page 119



users
The users command shows which users are currently logged in.

users PDF last generated: February 23, 2020

Intoduction to UNIX User Guide Page 120



w
The w command combines the [uptime]{UNIXguide-uptime.html} and who (page
147) commands into a single letter. It also shows what users are currently doing,
and where they are logged in from.

$ w
09:05:19 up 5 days, 17:59,  1 user,  load average: 0.00, 0.0

0, 0.00
USER     TTY      FROM             LOGIN@   IDLE   JCPU   PCPU
WHAT
euid123  pts/8    10.144.120.74    09:05    1.00s  0.04s  0.00
s w

The load averages in this example look a lot better, since this command was run
on a Linux system. ?

w PDF last generated: February 23, 2020

Intoduction to UNIX User Guide Page 121



Running Jobs Locally
Jobs are how you produce data and run analyses. There are several different
resources attributed to different jobs.

Some jobs are better run on local computers, as opposed to on a cluster, using
CPUs. If you’re in a computational lab, it is likely that some of your local
computers will have GPUs to run jobs on as well.

Local CPU Run Script
Running AMBER locally on CPUs eliminates the need for the queue scheduler
lines. When running these scripts, keep in mind that you will need to edit the
while [ $f -lt 11] part to run the loop for the correct number of mdin files.

This specific script assumes that there are 10 mdin files running minimization,
heating, and equilibration, and an 11th specifying production. Thus, the first 10 are
run on CPUs through this script. This script also will throw up a flag if the counters
for e and f are set with brackets and not parentheses, so make sure to change
that from a different one too. Additionally, before running on CPUs, you will need
to modify the permissions (page 123) on the script to make it executable. As a
reminder, this can be done through chmod u+x example_script.sh . After, you
can run the script with nohup (page 48), through something like nohup

./example_script.sh & .

#!/bin/bash

e=0
f=1

while [ $f -lt 11 ]; do

$AMBERHOME/bin/pmemd -O -i mdin.$f \
-o WT_protein_system_wat_init$f.out \
-p WT_protein_system_wat.prmtop \
-c WT_protein_system_wat_init$e.rst \
-r WT_protein_system_wat_init$f.rst \
-x WT_protein_system_wat_init$f.mdcrd \
-ref WT_protein_system_wat_init$e.rst

e=$((e+1))
f=$((f+1))
done

Running Jobs Locally PDF last generated: February 23, 2020

Intoduction to UNIX User Guide Page 122



Local GPU Run Script
As you’ll see from a later “GPU Run Script” (page 130) section, there are some
differences between running locally and running through a queue scheduler. For
one, essentially all of the queue scheduler lines just… disappear. Additionally, the
“export” line may or may not need to be commented out. You only need it if there
are multiple GPUs you could run on–to specify the core you want.

#!/bin/bash
export CUDA_VISIBLE_DEVICES=0

e=0
f=1

while [ $f -lt 201 ]; do

$AMBERHOME/bin/pmemd.cuda -O -i mdin.11 \
-o WT_protein_system_wat_md$f.out \
-p WT_protein_system_wat.prmtop \
-c WT_protein_system_wat_md$e.rst \
-r WT_protein_system_wat_md$f.rst \
-x WT_protein_system_wat_md$f.mdcrd \
-ref WT_protein_system_wat_md$e.rst

e=$[$e+1]
f=$[$f+1]
done

Executing Scripts (and Changing
Permissions)
Computers, while magical beasts, can’t always read your mind. When you want to
use most scripts (i.e. not one submitted to a queue scheduler), you’ll need to use
chmod . This command changes the permissions of the generated file. So, to

make the script runnable (known as executable in computer speak), you would
use

Local GPU Run Script PDF last generated: February 23, 2020

Intoduction to UNIX User Guide Page 123



$ chmod u+x

The letters all stand for something, and follow a syntax of user + privilege . To
add the permission for all users, the user group would be a . Similarly, to add only
yourself, the option is u , and to add group permissions, the option is g . All other
users fall under the o specifier. The different privileges available are read ( r ),
write ( w ), and execute ( x ). If you wanted to remove permissions, then you would
instead of + (for add, see what they did?!?), you would use - . After using
chmod , your job can be run (probably using nohup (page 48), but I’m not you).

A few other things with chmod : first, if you’re trying to make a directory tree
accessible, you’ll need the -r flag to make it recursive. Second, you can also
achieve rwx status through using a command with numbers. The table below
(page 124) shows what some of these numbers are.

Based on that table, you could use something like the following command to
make folder_a and all its contents have rwx access for the user, rw- access
for the group, and r-x access for other users. Sometimes you’ll need to have
sudo (page 101) privileges to do this. Also, ensure that you are using the
uppercase -R flag for recursion, because otherwise you can lose read access.

$ chmod -R 765 folder_a/

Table: Numeric permissions with chmod

Number Function Listed Binary Reason

0 No permissions given -{}-{}- 000

1 Execute only -{}-x 01

2 Write only -w- 010

3 Write and execute -wx 011

4 Read only r-{}- 100

5 Read and execute r-x 101

6 Read and write rw- 110

Table: Numeric permissions with chmod PDF last generated: February 23, 2020

Intoduction to UNIX User Guide Page 124



Number Function Listed Binary Reason

7 Read, write, and execute rwx 111

Table: Numeric permissions with chmod PDF last generated: February 23, 2020

Intoduction to UNIX User Guide Page 125



Using PBS Schedulers
The most common queue manager is Portable Batch System (PBS). It was
created by NASA, and many clusters use it for scheduling. A complete guide to
using the PBS queue manager can be found in the PBS Professional® User’s
Guide .

 Important: Each PBS system has is set up slightly differently in terms of
the information that you need to pass to it. Ask an administrator for an
example specific to your system. The examples provided here are based on
the system I often work on.

CPU Run Scripts
Run scripts, or jobfiles, contain all the necessary information to run a job. An
example is the basher.sh script (thanks, Alice!).

Using PBS Schedulers PDF last generated: February 23, 2020

Intoduction to UNIX User Guide Page 126

https://pbsworks.com/pdfs/PBSUserGuide13.0.pdf
https://pbsworks.com/pdfs/PBSUserGuide13.0.pdf
https://pbsworks.com/pdfs/PBSUserGuide13.0.pdf


#!/bin/bash
#PBS -q my_cpu_alloc              ## queue allocation
#PBS -l nodes=1:ppn=20,mem=20GB   ## 20 processors
#PBS -j oe                        ## same output and error file
#PBS -r n                         ## Job not re-runnable
#PBS -o err.error                 ## name of error file
#PBS -N WT_protein                ## name of job for queue

cd $PBS_O_WORKDIR

cat $PBS_NODEFILE > $PWD/PBS_NODEFILE
module load amber/19-mvapich2

e=0
f=1
while [ $f -lt 11 ]; do

mpirun -np 20 -hostfile $PWD/PBS_NODEFILE $AMBERHOME/bin/pmem
d.MPI -O -i mdin.$f \
-o WT_protein_system_wat_init$f.out \
-p WT_protein_system_wat.prmtop \
-c WT_protein_system_wat_init$e.rst \
-r WT_protein_system_wat_init$f.rst \
-x WT_protein_system_wat_init$f.mdcrd \
-ref WT_protein_system_wat_init$e.rst

e=$[$e+1]
f=$[$f+1]
done

The very first line specifies that it is a bash script (feel free to read more about that
on WikiBooks ). The next line specifies where the job should be run on the cluster
(using CPUs). The #PBS -N line is the job tagline to appear in the queue. The
module load line tells the cluster to locate the shared location for the cluster’s

program. In this case, instead of a local installation of AMBER18 in an individual’s
home directory, the entire cluster can use the installed AMBER18. The list of
available modules can be checked through the module avail command. Finally,
the final lines specify that you want the script to run 10 times, with structures
1-10, based on the appropriate .mdin file. If you wanted to change that to
structures 3-10, then the e=0 line would become e=2 , and the f=1 line would
become f=3 . To actually run this script, you would need an appropriately named
.prmtop and an init0.rst file. This file is just the original .inpcrd copied

with a new name, since both are AMBER7 restart files.

The next example is of a Gaussian 16 run script (thanks, Mark!).

CPU Run Scripts PDF last generated: February 23, 2020

Intoduction to UNIX User Guide Page 127

https://en.wikibooks.org/wiki/Bash_Shell_Scripting


 Note: To use Gaussian 09, mess with the commenting.

CPU Run Scripts PDF last generated: February 23, 2020

Intoduction to UNIX User Guide Page 128



#!/bin/bash
#PBS -N My_Gauss_Job                ## name of job for queue
#PBS -j oe                          ## same output and error fi
le
#PBS -o error.err                   ## name of error file
#PBS -q my_cpu_alloc                ## queue allocation
#PBS -l nodes=1:ppn=20,mem=20GB     ## 20 processors
#PBS -r n                           ## Job not re-runnable
#PBS -m abe                         ## Mail on abort, begin, er
ror

## Go to the place you submit the job from
cd $PBS_O_WORKDIR

## input is the name of your job input without the file extensi
on
## and ext is the file extension
## so this job is for test.gjf
## Old versions would resemble test.com
input=test
ext=gjf

#---------------------#
# SET JOB ENVIRONMENT #
#---------------------#
BaseScrDir=/scratch
PbsId=`echo ${PBS_JOBID} | cut -d "." -f1`
ScrDir=${BaseScrDir}/${USER}.${PbsId}

## Change following line to where you are at
cp $PBS_O_WORKDIR/$input.$ext $ScrDir
cd $ScrDir

## Gaussian 09 (uncomment if wanted)
#export g09root=/share/apps/GAUSSIAN/g09d01
#source $g09root/g09/bsd/g09.profile

## Gaussian 16 (comment if unwanted)
export g16root=/share/apps/GAUSSIAN/g16a03
source $g16root/g16/bsd/g16.profile

## Run the job
#time g09 < $input.$ext > $input.log
time g16 < $input.$ext > $input.log

CPU Run Scripts PDF last generated: February 23, 2020

Intoduction to UNIX User Guide Page 129



## Bring the log file, checkpoint, and wavefunction files
## back to the place you submitted the job from
cp -r $ScrDir/$input.log $PBS_O_WORKDIR
cp -r $ScrDir/$input.chk $PBS_O_WORKDIR
#cp -r $ScrDir/$input.wfn $PBS_O_WORKDIR

exit 0

In this example, your input file is copied to the scratch directory to run the job, and
when the job is completed, the output files are returned to your home directory.
This is done so that the calculations are not run on the head (login) node, thereby
saving you from being yelled at and receiving a temporary cluster ban. To modify
this script, change the input and export lines to match the file name of the
Gaussian input (either .com or .gjf ), which can be generated in Gaussview or
Avogadro .

 Note: This Gaussian script is very PBS system-specific. Sometimes it’s a
module. Sometimes you have a bunch of lines like these. Do not run
Gaussian without a script unless your administrator has told you to do so.

GPU Run Script
There are not many differences between a script to run on GPUs versus CPUs,
other than specifying the actual location to run. The following is an example of the
bashercuda.sh AMBER script to run on GPUs (thanks again, Alice!).

GPU Run Script PDF last generated: February 23, 2020

Intoduction to UNIX User Guide Page 130

https://avogadro.cc/


#!/bin/bash
#PBS -q my_gpu_alloc       ## queue allocation
#PBS -l nodes=n11-12-13    ## use this GPU node
#PBS -j oe                 ## same output and error file
#PBS -r n                  ## Job not re-runnable
#PBS -o err.error          ## name of error file
#PBS -N WT_protein         ## name of job for queue

export CUDA_VISIBLE_DEVICES=3

cd $PBS_O_WORKDIR

#module load amber/19-cuda_mvapich2
module load amber/19-cuda_serial
#export MV2_ENABLE_AFFINITY=0

e=0
f=1

while [ $f -lt 201 ]; do

#nohup mpirun --bind-to none -np 4 \
#-hostfile $PWD/PBS_NODEFILE
$AMBERHOME/bin/pmemd.cuda -O -i mdin.11 \
-o WT_protein_system_wat_md$f.out \
-p WT_protein_system_wat.prmtop \
-c WT_protein_system_wat_md$e.rst \
-r WT_protein_system_wat_md$f.rst \
-x WT_protein_system_wat_md$f.mdcrd \
-ref WT_protein_system_wat_md$e.rst

e=$[$e+1]
f=$[$f+1]
done

Like before, this script specifies a loop, to create MD files 1-200. If you wanted to
add a maximum job time of 12 hours (a requirement for some supercomputers),
then add the line

#PBS -l walltime=11:59:59

GPU Run Script PDF last generated: February 23, 2020

Intoduction to UNIX User Guide Page 131



to your input file, after the other #PBS -l line. The reason why you shouldn’t
specify 12:00:00 for your run time is that the queue sorts by the time limits, and
this will place priority on your jobs. An important thing to note in this script is that
you specify the node ( #PBS -l nodes= ) and the core ( export
CUDA_VISIBLE_DEVICES= ) that you want to run on, which can be verified through
nvidia-smi (page 49). This example uses core 3 on node n11-12-13.

R Script PBS Submission
R is a programming language often used for data processing and statistics.
Because our simulation analysis generate text files for single runs, it can be helpful
to average them across replicates, and R is a great choice for this purpose.

On many clusters, several packages have been installed for all users, meaning
that they do not need to be locally installed. To run R and access these packages,
you need to first create a ~/.Renviron file with something like the following line:

R_LIBS=/share/apps/R/3.6.0/pkgs

As this is a hidden file that’s sourced by the module, you only need to make it
once.

While most scripts with R are pretty simplistic, scripts that average huge
trajectories or perform a lot of math take up valuable computer memory. Some
packages also have a lot of overhead can also slow down a cluster for other
users. Thus, these types of things (e.g., things that run with the tidyverse package
or EDA averaging scripts) should be submitted through the queue using a script
like:

#!/bin/bash
#PBS -q my_cpu_alloc
#PBS -l nodes=1:ppn=1,mem=20GB
#PBS -j oe
#PBS -r n
#PBS -o R.error
#PBS -N R-test

cd $PBS_O_WORKDIR

module load R/3.6.0

Rscript name_of_actual_R_script.R

R Script PBS Submission PDF last generated: February 23, 2020

Intoduction to UNIX User Guide Page 132

https://www.r-project.org/


qsub
Submitting jobs is done with the qsub command. To submit a jobfile named
jobfile , the command would simply be:

$ qsub jobfile

The jobfile has a string of information for running the job, and must include the
#!/bin/bash line at the start.

Dependent submissions, i.e. job B needs the output from job A but job A isn’t
finished and you want to submit job B right now going to sleep, can also be
accomplished. To create a dependent job, first submit the first job with a normal
qsub jobfile . That job will return a job ID (which can be checked through qstat

(page 134)), which you’ll need to submit the dependent job. The dependency
submission would follow:

$ qsub -W depend=afterok:12345 jobfile

where 12345 is the job ID of job A and jobfile is the jobfile of job B .

 Note: On some clusters, the job ID will show something like
12345.my.address.org; you only need the 12345 part.

If you need to run a job interactively (i.e. there are some command prompts you
need to respond to within the job), then use

$ qsub -I -q my_cpu_alloc

which will allow you access a specific node. To leave interactive mode when the
job is finished, use exit .

qsub PDF last generated: February 23, 2020

Intoduction to UNIX User Guide Page 133



qstat
If you want to see what jobs you have running or waiting to run (queued jobs),
then use qstat . Using qstat alone will show the jobs status for every single
user within the PBS manager. To check the queue for a specific job, then you
would need to do something like

$ qstat 1323523

where 1323523 is the job number that was given when the job was submitted.
Alternatively, to show just what you, a specific user, euid123, are running, use
qstat -u euid123 . The -n flag will give information about the specific

computer node that your simulation is running on. Thus, your command could
become qstat -u euid123 -n . This is a very good command to create an alias
(page 99) for.

qdel
Sometimes you scream out in horror when you realize that you shouldn’t have
submitted a job yet, or it’s taking too long and you’d rather just kill it. On PBS
systems, this can be done with qdel . Again, the job number will need to be
added, so that it’s practically look like:

$ qdel 1323523

where 1323523 is the job number that was given when the job was submitted.

qstat PDF last generated: February 23, 2020

Intoduction to UNIX User Guide Page 134



Using SLURM Schedulers
A SLURM queue manager is a slightly more unpopular queue scheduler. Unlike a
PBS or SGE scheduler, the commands are slightly less straightforward. If this
quick guide doesn’t provide enough detail, there is more information available on
UNT’s HPC website or the Slurm website .

CPU Run Scripts
Run scripts, or jobfiles, contain all the necessary information to run a job. An
example is the run-R.job script.

#!/bin/bash
#SBATCH -p public                 # partition
#SBATCH --qos general             # quality of service (priorit
y)

module load R/R-devel

R CMD BATCH clogit.R OUT1.R

The very first line specifies that it is a bash script (feel free to read more about that
on WikiBooks ). The next two lines specify where the job should be run on the
cluster. The module load line tells the cluster to locate the shared location for
the cluster’s program. In this case, instead of a local installation of R in an
individual’s home directory, the entire cluster can use the installed R. Finally, the
last line is the command used to run a specific function. In this case, it’s to use R
on the pre-created R script, clogit.R , and give the output file as OUT1.R . The
list of available modules can be checked through the module avail command.

The next script is a Gaussian run script for Talon3. It follows the same idea as the
one for PBS, but with some extra SLURM commands.

Using SLURM Schedulers PDF last generated: February 23, 2020

Intoduction to UNIX User Guide Page 135

https://hpc.unt.edu/slurm
https://slurm.schedmd.com/sbatch.html
https://en.wikibooks.org/wiki/Bash_Shell_Scripting


#!/bin/bash
#SBATCH -J My_Gauss_Job        # name in queue
#SBATCH -o Gauss_job.o%j       # output
#SBATCH -e Gauss_job.e%j       # error
#SBATCH -C c6320               # contraint -- specific nodes
#SBATCH -p public              # partition
#SBATCH -N 1                   # Nodes
#SBATCH -n 16                  # Tasks per node
#SBATCH --mem-per-cpu=150MB    # memory allocation
#SBATCH -t 12:00:00            # Wallclock time (hh:mm:ss)

## Loading Gaussian module
module load gaussian/g16-RevA.03-ax2

## input is the name of your job input without the file extensi
on
## and ext is the file extension
## so this job is for test.gjf
## Old versions would resemble test.com
input=test
ext=gjf

## Define scratch directory
export GAUSS_SCRDIR=/storage/scratch2/$USER/$SLURM_JOB_ID
mkdir -p $GAUSS_SCRDIR

## Copy your current folder to the scratch directory
cp $SLURM_SUBMIT_DIR/$input.$ext $GAUSS_SCRDIR

## Go to the scratch directory to run the calculation
cd $GAUSS_SCRDIR

## Run the program
time g16 < $input.$ext > $input.log

## Bring log file, checkpoint, wavefunction and info files
## back to the place you submitted the job from
cp -r $GAUSS_SCRDIR/$input.log $SLURM_SUBMIT_DIR
cp -r $GAUSS_SCRDIR/$input.chk $SLURM_SUBMIT_DIR
#cp -r $GAUSS_SCRDIR/$input.wfn $SLURM_SUBMIT_DIR

#echo "Job finished at"
#date

exit 0

CPU Run Scripts PDF last generated: February 23, 2020

Intoduction to UNIX User Guide Page 136



GPU Run Scripts
The following is an example script to run GPU AMBER jobs on Talon3.

#!/bin/bash

#SBATCH -J WT_protein           # name of job in queue
#SBATCH -o WT_protein.o%j       # output file (%j appends job n
ame)
#SBATCH -p public               # partition
#SBATCH --qos general           # quality of service
#SBATCH --ntasks=1              # Number of nodes
#SBATCH --gres=gpu:2            # 2 GPUs
#SBATCH -t 12:00:00             # Wallclock time (hh:mm:ss)

### Loading modules
module load amber/18-cuda-mpi

e=0
f=1

while [ $f -lt 101 ]; do

$AMBERHOME/bin/pmemd.cuda -O -i mdin.4 \
-o WT_protein_system_wat_md$f.out \
-p WT_protein_system_wat.prmtop \
-c WT_protein_system_wat_md$e.rst \
-r WT_protein_system_wat_md$f.rst \
-x WT_protein_system_wat_md$f.mdcrd \
-ref WT_protein_system_wat_md$e.rst

e=$[$e+1]
f=$[$f+1]
done

sbatch
Submitting jobs is done with the sbatch command. To submit a jobfile named
jobfile , the command would simply be:

GPU Run Scripts PDF last generated: February 23, 2020

Intoduction to UNIX User Guide Page 137



$ sbatch jobfile

The jobfile has a string of information for running the job, and must include the
#!/bin/bash line at the start.

Dependent submissions i.e. job B needs the output from job A but job A isn’t
finished and you want to submit job B right now going to sleep, can be
accomplished through something like:

$ sbatch --dependency=afterok:12345 jobfile

where 12345 is the job ID of job A and jobfile is the jobfile of job B . The
job ID is given when job A is submitted, but it can also be checked in the queue
with squeue (page 138).

squeue
If you want to see what jobs you have running or waiting to run (queued jobs),
then use squeue . Using squeue alone will show the jobs status for every single
user within the SLURM manager. To check the queue for a specific job, then you
would need to do something like

$ squeue 1323523

where 1323523 is the job number that was given when the job was submitted.
Alternatively, to show just what you, a specific user, are running, use squeue -u .

scancel
Sometimes you scream out in horror when you realize that you shouldn’t have
submitted a job yet, or it’s taking too long and you’d rather just kill it. On SLURM
systems, this can be done with scancel . Again, the job number will need to be
added, so that it’s practically look like:

$ scancel 1323523

where 1323523 is the job number that was given when the job was submitted.

squeue PDF last generated: February 23, 2020

Intoduction to UNIX User Guide Page 138



Using XSEDE's Comet
Comet’s IP address is comet.sdsc.edu . Comet also uses a SLURM (page 135)
queue manager. More information available on Comet’s website or the Slurm
website . To use Comet, you need to have an XSEDE allocation and be added to a
project. To apply for an XSEDE account, visit the XSEDE User Portal and follow
their steps for account creation. Then, email your XSEDE username to the person
with the XSEDE allocation to be added to a project. It may take a few days
between being added on the XSEDE portal to actually being allowed to use the
resources.

 Tip: One of the “pro-tips” for using Comet is to shave a second off of your
wallclock time. Think of how many people aren’t doing this but submitting
jobs of the same wallclock time–that thought is how many people you’re
jumping in the queue. Think like a computer!

CPU Run Scripts
An example CPU runscript for Comet is the comet-cpu-jobfile.sh script. One
of the new parts of this script is the #SBATCH -A abc123 part. What goes in
place of abc123 comes from using the show_accounts command on Comet.
You’re using this line to pick which allocation is charged system units (XSEDE’s
computer currency) for running the job. This was modified from Alice’s Comet
scripts to incorporate SLURM’s environment variables.

Using XSEDE's Comet PDF last generated: February 23, 2020

Intoduction to UNIX User Guide Page 139

https://portal.xsede.org/sdsc-comet
https://slurm.schedmd.com/sbatch.html
https://slurm.schedmd.com/sbatch.html
https://portal.xsede.org/my-xsede#/guest


#!/bin/bash

#SBATCH -A abc123            # PI allocation
#SBATCH --nodes=2            # request 2 nodes
#SBATCH --tasks-per-node=24  # number CPU
#SBATCH -J WT-protein      # job name
#SBATCH -o amber.out         # output and error file name (%j e
xpands to jobID)
#SBATCH -t 11:59:59          # run time (hh:mm:ss)
#SBATCH --export=ALL

## mkdir /oasis/scratch/comet/$USER/temp_project/
## NOTE: You should from this a directory off of the above path

#Set up the amber environment
module load amber/18

## The name of the directory that these files are in
## (used to copy mdinfo to your comet home directory)
prefix=WT_protein_system

## Copy the necessary files from the submission location
## to the place the job will run
cp $SLURM_SUBMIT_DIR/*.prmtop /scratch/$USER/$SLURM_JOBID
cp $SLURM_SUBMIT_DIR/*init0.rst /scratch/$USER/$SLURM_JOBID
cp $SLURM_SUBMIT_DIR/mdin* /scratch/$USER/$SLURM_JOBID

## Access the place to run the job
cd /scratch/$USER/$SLURM_JOBID

## Loop variables to restart calculation
## e=input, f=output
e=0
f=1
while [ $f -lt 4 ]; do

ibrun $AMBERHOME/bin/pmemd.MPI -O -i mdin.$f \
-o WT_protein_system_wat_init$f.out \
-p WT_protein_system_wat.prmtop \
-c WT_protein_system_wat_init$e.rst \
-r WT_protein_system_wat_init$f.rst \
-x WT_protein_system_wat_init$f.mdcrd \
-ref WT_protein_system_wat_init$e.rst

## if calculation will not finish within 48 hours, make sure to

CPU Run Scripts PDF last generated: February 23, 2020

Intoduction to UNIX User Guide Page 140



## copy calculation so far to permanent scratch dir INSIDE loop
#cp -R /scratch/$USER/$SLURM_JOBID/* $SLURM_SUBMIT_DIR

## Puts time info in home directory
cp mdinfo $HOME/mdinfo.$prefix

e=$[$e+1]
f=$[$f+1]
done

## these lines copy the files into the submission directory
## after the calculation has finished--make sure to be within
## the wallclock time!
cp -R /scratch/$USER/$SLURM_JOBID/*md$f.out $SLURM_SUBMIT_DIR
cp -R /scratch/$USER/$SLURM_JOBID/*md$f.rst $SLURM_SUBMIT_DIR
cp -R /scratch/$USER/$SLURM_JOBID/*md$f.mdcrd $SLURM_SUBMIT_DIR

GPU Run Scripts
An example GPU runscript for Comet is the comet-gpu-jobfile.sh script. This
was modified from Alice’s Comet scripts to incorporate SLURM’s environment
variables.

GPU Run Scripts PDF last generated: February 23, 2020

Intoduction to UNIX User Guide Page 141



#!/bin/bash

#SBATCH --nodes=1          # request 1 node
#SBATCH -p gpu-shared      # queue (partition) -- normal, devel
opment, etc.
#SBATCH --gres=gpu:2       # resources you want to use (2 GPUs)
#SBATCH --tasks-per-node=2 # number GPUs
#SBATCH --export=ALL       # Keep the current environment stuff
#SBATCH -J 1DNA-5mrC       # job name
#SBATCH -A abc123          # PI allocation
#SBATCH -o amber.out       # output and error file name (%j exp
ands to jobID)
#SBATCH -t 23:59:59        # run time (hh:mm:ss)

## if you want to submit to gpu rather than gpu-shared
## have number of gpus, tasks per node, and
## OMP_NUM_THREADS equal to 4

## Set up the job environment
module unload intel
module load amber/18
module load cuda

## Set number of threads, should equal number of GPUs
#export OMP_NUM_THREADS=2

## The name of the directory that these files are in
## (used to copy mdinfo to your comet home directory)
prefix=WT_protein_system

## Loop variables to restart calculation
## e=input, f=output
e=0
f=1

## All files should be located in the Lustre filesystem
## So, place them in:
## /oasis/scratch/comet/$USER/temp_project/$prefix

## Copy the necessary files from the submission location
## to the place the job will run
cp $SLURM_SUBMIT_DIR/*wat*.prmtop /scratch/$USER/$SLURM_JOBID
cp $SLURM_SUBMIT_DIR/*md$e.rst /scratch/$USER/$SLURM_JOBID
cp $SLURM_SUBMIT_DIR/mdin* /scratch/$USER/$SLURM_JOBID

GPU Run Scripts PDF last generated: February 23, 2020

Intoduction to UNIX User Guide Page 142



## Access the place to run the job
cd /scratch/$USER/$SLURM_JOBID

while [ $f -lt 101 ]; do

ibrun $AMBERHOME/bin/pmemd.cuda.MPI -O -i mdin.4 \
-o WT_protein_system_wat_md$f.out \
-p WT_protein_system_wat.prmtop \
-c WT_protein_system_wat_md$e.rst \
-r WT_protein_system_wat_md$f.rst \
-x WT_protein_system_wat_md$f.mdcrd \
-ref WT_protein_system_wat_md$e.rst

## Puts time info in home directory
cp mdinfo $HOME/mdinfo.$prefix

## Puts output files into directory accessible outside of job
## Environment--MUST BE IN LOOP
cp /scratch/$USER/$SLURM_JOBID/*md$f.out $SLURM_SUBMIT_DIR
cp -R /scratch/$USER/$SLURM_JOBID/*md$f.rst $SLURM_SUBMIT_DIR
cp -R /scratch/$USER/$SLURM_JOBID/*md$f.mdcrd $SLURM_SUBMIT_DIR

e=$[$e+1]
f=$[$f+1]
done

GPU Run Scripts PDF last generated: February 23, 2020

Intoduction to UNIX User Guide Page 143



finger (and chfn)
Did I include this program under fun because body parts are funny? Indeed. The
finger program is used to find out information about a specific user given their

username. The command syntax is finger username . I’m sure you can think of
the word that Unix uses to describe this incredibly appropriate action.

[euid123@talon3 ~]$ finger euid123
Login: euid123                                Name: Scrappy Stu
dent
Directory: /home/euid123                   Shell: /bin/bash
On since Thu Mar 29 08:03 (CDT) on pts/1 from some-computer.un
t.edu

13 minutes 37 seconds idle
On since Thu Mar 29 08:28 (CDT) on pts/2 from some-computer.un
t.edu
New mail received Tue Mar 27 15:07 2018 (CDT)

Unread since Thu Mar 22 14:38 2018 (CDT)
No Plan.

As you can see, you can use finger on your own username as a way to check
to see if you have mail (page 111).

Additionally, you can update your personal information that appears with finger

using chfn . Some system administrators block you from changing this
information, though, so knowing this probably isn’t very helpful.

finger (and chfn) PDF last generated: February 23, 2020

Intoduction to UNIX User Guide Page 144



mesg
To set whether users can send you messages with the write (page 147) command,
use mesg . Just typing mesg will register what your choice is currently set as (y
allows messages to appear; n prevents messages from appearing). To change the
settings, use mesg y or mesg n , depending on the setting you want.

mesg PDF last generated: February 23, 2020

Intoduction to UNIX User Guide Page 145



wall
The wall command can be used to write a message to every Terminal window
currently open on a computer, including your own. This type of thing would be
useful if you wanted to warn people about an impending shut down, but it can
also be a fun way to mess with your coworkers (though, I may have a warped
sense of fun…). The ability to send a message is brought up with wall , and the
message is sent using Cntrl+D (note: on a Mac it is indeed Cntrl and NOT
command). This allows you to use enter to break up information into paragraphs if
you so wish.

kevin@raphael$ wall

I thought it\'d be fun to send myself a message via Terminal, b
ecause I\'m ridiculous. So here I go.

WHY AM I LIKE THIS?

Lyk this iff u cri evertim

Broadcast Message from kevin@raphae
l

(pts/7) at 20:34 CS
T...

I thought it\'d be fun to send myself a message via Terminal, b
ecause I\'m ridiculous. So here I g
o.

WHY AM I LIKE THI
S?

Lyk this iff u cri everti
m

my_mac_computer:~ Owner$

The first iteration is what I sent, and the Broadcast Message is the message that
everyone received (because I received a copy when I sent it). It includes who sent
it ( kevin@raphael ) and which Terminal it was sent from ( pts/7 ).

wall PDF last generated: February 23, 2020

Intoduction to UNIX User Guide Page 146



who and write
Similar to wall , messages can be sent to an individual user using write . First,
you need to know who that individual user is (another straightforward
command–amazing).

emmett@splinter:~$ who
emmett   tty7         2018-03-08 12:18 (:0)
hatice   pts/2        2018-03-07 09:40 (10.144.120.1)
hatice   pts/18       2018-03-07 09:52 (10.144.120.1)
hatice   pts/9        2018-03-08 10:49 (10.144.120.1)
hatice   pts/1        2018-03-08 14:42 (10.144.120.1)
emmett   pts/20       2018-03-09 09:53 (10.144.120.22)
emmett   pts/21       2018-03-09 09:53 (10.144.120.22)

In the example, 6 Terminal windows are open on splinter . The user hatice

has 4 windows open, while emmett has 3 open, one of which is through an ssh

session. The dates and times specify when the window was first opened. Now
that we know who has windows open, and what they are (shown in the second
column), we can send a message to any of those windows. I chose to write a
message to myself. This is what the writing terminal looks like.

emmett@splinter:~$ write emmett pts/20
Hi pal! Nice you see that I can talk to you via ssh!
I\'m glad I can take over your Terminal. Now get back to work!

Like before, I can use enter for line breaks, and I send by using Cntrl+D (and not
command if on a Mac). This is what the receiving Terminal looks like (it literally
takes over so you can’t do work).

emmett@splinter:~$
Message from emmett@splinter on pts/21 at 09:54 ...
Hi pal! Nice you see that I can talk to you via ssh!
I\'m glad I can take over your Terminal. Now get back to work!
EOF

After the EOF (End-of-File), you can hit enter to get the command prompt back.

who and write PDF last generated: February 23, 2020

Intoduction to UNIX User Guide Page 147


	
	
	Table of Contents
	Introduction
	Command Line
	UNIX and Unix-Like File Systems
	Root Directory
	Bin Directories
	Home Directory
	Scratch Directory
	Graphical User Interface
	Shells (bash and csh)
	Bash Configuration File (the .bash_profile)
	C-Shell Configuration File (the .cshrc)
	Environment Variables
	Setting Bash Environment Variables
	Setting C-Shell Environment Variables
	$PATH
	Housekeeping
	Table: Symbols on the naughty list
	Regular Expressions
	Table: Common regular expressions.
	ssh
	ssh with Graphical Forwarding (X11)
	passwd: Changing your Password
	exit
	cd
	mkdir
	ls (and an intro to permissions and flags)
	pwd
	tree
	hostname
	whoami
	which
	mv
	cp
	scp
	rsync
	sftp
	rm
	gzip and gunzip
	bzip2 and bunzip2
	zip and unzip
	tar
	top
	ps
	kill
	watch
	Cntrl+C: Abort Abort Abort
	Cntrl+Z: Background Jobs
	nvidia-smi
	du
	sleep
	crontab: a Scheduling Tool
	Autobackup script
	Secondary Autobackup Script

	vi editor
	Searching Files
	Search and Replace All
	Commenting Out
	less: Safe Viewing
	more: Minimalist Safe Viewing
	touch
	echo
	> and >>: redirecting output
	cat (and tac)
	awk
	diff
	grep
	paste
	sort
	split
	Example flags for split byte sizes
	sed
	convert
	eog
	evince
	Cntrl+A: Begin Again
	Cntrl+L: CLEAR!
	Cntrl+R: History's Pal
	Cntrl+U: Clear the Line!
	Tab: the Autofill Key
	The Pipe
	*: Wildcards
	date, cal, and time
	date
	cal
	time
	head
	tail
	file
	man Pages
	find
	locate
	wc
	history
	ln: Symbolic Links
	Aliases: for Efficiency and Laziness
	Opening Additional Terminals from Terminal
	sudo: Administrator Rights and Installations
	free
	ifconfig
	Installing Packages with a Package Manager
	Table: Package managers for different systems
	Fully Removing Packages (and Kernels) with a Package Manager
	Groups (a supplement to chmod)
	Checking Groups
	Removing Users from Groups
	last
	
	Mail
	Checking Mail
	Sending Mail
	mount
	Table: List of device formatting types
	ping
	reboot
	su: Switch User
	uptime
	useradd
	users
	w
	Running Jobs Locally
	Local CPU Run Script
	Local GPU Run Script
	Executing Scripts (and Changing Permissions)
	Table: Numeric permissions with chmod
	Using PBS Schedulers
	CPU Run Scripts
	GPU Run Script
	R Script PBS Submission
	qsub
	qstat
	qdel
	Using SLURM Schedulers
	CPU Run Scripts
	GPU Run Scripts
	sbatch
	squeue
	scancel
	Using XSEDE's Comet
	CPU Run Scripts
	GPU Run Scripts
	finger (and chfn)
	mesg
	wall
	who and write

