
Analysis Guide
version 0.1

Last generated: October 07, 2021

This work is licensed under a Creative
Commons Attribution-ShareAlike 4.0
International License .

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Table of Contents
Introduction

Overview... 3

Cpptraj
Cpptraj.. 4

Plotting RMSD, RMSF, and Total Number of Hydrogen Bonds with gnuplot.......................... 7

Plotting Averages for RMSD (etc.) using R and gnuplot .. 10

parmed ... 24

Hydrogen Bond Analysis (HBA).. 25

Correlational Analysis... 38

Backbone Analysis ... 46

Secondary Structure .. 49

Clustering ... 53

Using VMD
Custom Settings at Start-Up.. 56

Loading Files from the Command Line .. 58

Changing Your System's Orientation... 59

Labels ... 60

Graphical Representations... 62

Saving Files .. 66

Generating Images ... 67

Making Movies ... 71

Normal Mode Analysis
NMA Overview.. 73

Downloading VMD and ProDy.. 74

Loading in the Protein .. 75

Plotting Normal Modes with gnuplot.. 81

Determining Normal Modes with Python ... 83

Fast NMA (ft. cpptraj and Python).. 84

Energy Decomposition Analysis (EDA)
EDA Overview... 90

EDA Input File... 92

Analysis Guide User Guide PDF last generated: October 07, 2021

youremail@domain.com i

Locally Running EDA.. 94

EDA PBS Script.. 95

Interactive EDA Submission ... 97

EDA Results Analysis with R for Specific Residues ... 98

EDA Results Analysis with R: Difference of Averaged Systems .. 109

Using gnuplot's Multiplot Feature with Standard Deviations... 115

Deprecated Python EDA Scripts .. 119

Applying Difference Data to Structures in Chimera
Mapping Data to Structures ... 143

Matrix Correlation Information ... 148

EDA Plots by Residue .. 150

Color Keys.. 152

Using Gnuplot
Gnuplot Overview... 155

Custom Settings at Start-Up.. 156

Gnuplot Help .. 157

Input Information .. 158

Analysis Guide User Guide PDF last generated: October 07, 2021

youremail@domain.com ii

Introduction
The following is a guide to different types of analysis for molecular dynamics
simulations. Relevant other references include the:

• AMBER Manual

• AMBER Mailing List

• VMD User’s Guide

• Chimera User’s Guide

• Gnuplot User’s Guide

The scripts referenced in this guide can be found in this Github repository .

 PDF Download

Introduction PDF last generated: October 07, 2021

Analysis Guide User Guide Page 3

http://ambermd.org/doc12/Amber18.pdf
http://archive.ambermd.org/
http://www.ks.uiuc.edu/Research/vmd/current/ug/
https://www.cgl.ucsf.edu/chimera/docs/UsersGuide/
http://www.gnuplot.info/docs_5.0/gnuplot.pdf
https://github.com/emleddin/research-scripts
http://localhost:4012/Analysisguide-pdf/pdf/Analysisguide.pdf
http://localhost:4012/Analysisguide-pdf/pdf/Analysisguide.pdf

Cpptraj
Cpptraj is a useful data analysis tool for AMBER simulations. Detailed information
about it can be found in the AMBER manual . Cpptraj can be used to strip the
waters from the simulation and autoimage (center) the protein.

Since cpptraj is a program in AMBER, to run it, you would use a command like:

$ $AMBERHOME/bin/cpptraj -p WT_protein_system_wat.prmtop -i cpp
traj_strip.in

The -p flag specifies that a prmtop file is being read in, and the -i flag specifies
your input file. Using cpptraj in this manner is known as using it in batch mode.

You can also run cpptraj without an input file. In that case, you would start with
either

$ AMBERHOME/bin/cpptraj
cpptraj > parm WT_protein_system_wat.prmtop

or

$ $AMBERHOME/bin/cpptraj -p WT_protein_system_wat.prmtop

and follow through the list of commands line-by-line from your input file. Using
cpptraj in this manner is helpful when trying to test analysis commands (because
cpptraj is… finicky and the syntax can be easily messed up).

The following is an example input file which would strip and autoimage the first
five trajectory files (with the mdcrd extension; this could also be nc depending
on your scripted commands) and then write out a comprehensive NetCDF file with
the information of the five trajectory files (i.e cpptraj_strip.in).

Cpptraj PDF last generated: October 07, 2021

Analysis Guide User Guide Page 4

http://ambermd.org/doc12/Amber19.pdf

cpptraj_strip.in

reference WT_protein_system_wat_init0.rst
trajin WT_protein_system_wat_md1.mdcrd
trajin WT_protein_system_wat_md2.mdcrd
trajin WT_protein_system_wat_md3.mdcrd
trajin WT_protein_system_wat_md4.mdcrd
trajin WT_protein_system_wat_md5.mdcrd

autoimage
strip :WAT,K+

trajout WT_protein_system_1-5.nc cdf

It is important to note that if your system originally included waters that the strip
command you use should be like strip :WAT,K+ outprefix strip nobox . The
outprefix strip nobox part writes a new parmtop file that, following the

current example naming scheme, would be
strip.WT_protein_system_wat.prmtop . Without this part of the command,

you’ll need to use parmed (page 24) to strip the topology file, so that your imaged
trajectory doesn’t look like an angry sea urchin in VMD.

Now that a simulation has been processed, cpptraj can be used to gather a lot of
different trajectory information, such as hydrogen bonds, normal modes, distance
between residues, root mean square deviation (RMSD), and root mean square
fluctuations (RMSF).

The command used to run cpptraj now should use a stripped prmtop file, which
would have been the prmtop that you saved prior to solvation (or the newly
created stripped prmtop).

$ AMBERHOME/bin/cpptraj -p WT_protein_system_vac.prmtop -i cppt
raj_analysis.in

An example incorporating several types of analysis is cpptraj_analysis.in .

Cpptraj PDF last generated: October 07, 2021

Analysis Guide User Guide Page 5

cpptraj_analysis.in

trajin WT_protein_system_1-5.nc

autoimage

rms first out test_rms.dat :1-476 byres

For correlation matrix
matrix out WT_protein_system_matrix_correl.dat name corr_mat \
byres :1-476 correl

For normal modes (evecs = eigenvectors)
matrix out WT_protein_system_covar_mat.dat name norm_mode :1-47
6@CA,P,C4',C2 covar
diagmatrix norm_mode out WT_protein_system_evecs.out vecs 100 r
educe \
nmwiz nmwizvecs 100 nmwizfile WT_protein_system_100.nmd nmwizm

ask :1-476@CA,P,C4',C2

hbond out WT_protein_system_hbond.dat dist 3.0 avgout \
WT_protein_system_hbond_avg.dat

rms first out WT_protein_system_total_bb_rms.dat :1-476@CA,P,O
3',O5',C3',C4',C5'

rmsd :1-476 first perres perresavg range 1-476 perresout \
WT_protein_system_rmsd_byres.dat

atomicfluct :1-476 out WT_protein_system_rmsf_byres.dat byres

distance :476@PA :457@O3' out dist_PO_WT_protein_system.dat

The :1-476 atom mask is specifying that these processes are run on all of the
476 system residues. hbond extracts out the time hydrogen binds are present,
rmsd finds the RMSD (shocker!), atomicfluct finds the RMSF, and dist

determines the distance between two specified atoms throughout the simulation.
The \ symbols signify a line continuation for those specific commands.

Cpptraj PDF last generated: October 07, 2021

Analysis Guide User Guide Page 6

Plotting RMSD, RMSF, and Total
Number of Hydrogen Bonds with
gnuplot
Gnuplot is a freely available plotting utility that can be used to make publication-
worthy images. The utility is command line operated, and can be used with a
scripted input.

Gnuplot scripts end with the .gnu extension. To use gnuplot with a script, you
would use a command like:

$ gnuplot scriptname.gnu

In the following script, set encoding iso_8859_1 makes it so that the Å symbol
can be encoded by using {\305} . The script also assumes that this is in a
general directory, with additional system directories contained inside (think they’re
folder B, but you’re in folder A), which is why the path to the data files is set as
such. Another note to make is that the $1/500 converts the frames to your
nanosecond timescale–you’ll need to change it based on what your simulation’s
conversion is. Additional details about gnuplot scripts can be found on the
gnuplot documentation and in the gnuplot section (page 155) later in this guide.

rmsd-etc.gnu

(Thank’s Alice!)

Plotting RMSD, RMSF, and Total Number of Hydrogen Bonds with gnuplot PDF last generated: October 07, 2021

Analysis Guide User Guide Page 7

http://www.gnuplot.info/
http://www.gnuplot.info/documentation.html

set encoding iso_8859_1
set term postscript enhanced color font "Arial,24";

set xlabel "Time (ns)"
set ylabel "RMSD ({\305})"
set key left bottom Left reverse
#set yrange [1.5:4]

set output "rmsds.eps";
plot "WT-system/WT_protein_system_total_bb_rms.dat" u ($1/50
0):($2) w lines s bezier t "Wild Type" lw 4, \
"MUT-A-system/MUT_A_system_total_bb_rms.dat" u ($1/500):($2) w
lines s bezier t "Mutation A" lw 4, \
"MUT-B-system/MUT_B_system_RNA_total_bb_rms.dat" u ($1/50
0):($2) w lines s bezier t "Mutation B" lw 4, \
"MUT-C-system/MUT_C_system_total_bb_rms.dat" u ($1/500):($2) w
lines s bezier t "Mutation C" lw 4;

set xlabel "Time (ns)"
set ylabel "Number of hydrogen bonds"

set output "hbonds.eps";
plot "WT-system/WT_protein_system_hbond.dat" u ($1/500):($2) w
lines s bezier t "Wild Type" lw 4, \
"MUT-A-system/MUT_A_system_hbond.dat" u ($1/500):($2) w lines
s bezier t "Mutation A" lw 4, \
"MUT-B-system/MUT_B_system_hbond.dat" u ($1/500):($2) w lines
s bezier t "Mutation B" lw 4, \
"MUT-C-system/MUT_C_system_hbond.dat" u ($1/500):($2) w lines
s bezier t "Mutation C" lw 4;

set xlabel "Residue number"
set ylabel "RMSF ({\305})"
set key top left Left reverse
set xrange [0:455]
#set yrange [0:7]

set output "rmsf.eps";
plot "WT-system/WT_protein_system_rmsf_byres.dat" u 1:2 w line
s t "Wild Type" lw 4, \
"MUT-A-system/MUT_A_system_rmsf_byres.dat" u 1:2 w lines t "Mu
tation A" lw 4, \
"MUT-B-system/MUT_B_system_rmsf_byres.dat" u 1:2 w lines t "Mut
ation B" lw 4, \
"MUT-C-system/MUT_C_system_rmsf_byres.dat" u 1:2 w lines t "Mut

Plotting RMSD, RMSF, and Total Number of Hydrogen Bonds with gnuplot PDF last generated: October 07, 2021

Analysis Guide User Guide Page 8

ation C" lw 4;

Plotting RMSD, RMSF, and Total Number of Hydrogen Bonds with gnuplot PDF last generated: October 07, 2021

Analysis Guide User Guide Page 9

Plotting Averages for RMSD (etc.) using
R and gnuplot
Like in previous section (page 7), you can plot the averages of multiple
simulations. You can also use gnuplot to shade in the standard deviation of these
averages, but only once you’ve processed the data appropriately. Therefore, a
script using the programming language R has been created to properly get
averages and standard deviations for plotting with gnuplot. Once R has been
installed on your computer, then you would run the script with

$ Rscript r-magic-rmsd-rmsf-hbond-5.r

If this is your first time installing R, however, then you’ll also need to install the
packages that the script needs. These have been commented out in the provided
script, but you can also just do it before running the script by entering the R
environment like:

$ R
> install.packages("data.table")
> install.packages("abind")
> quit()
Save workspace image? [y/n/c]: n

The averaging script has been built for 2 systems with 3 replicates, but sometimes
you only need averages for one system, and sometimes you have more (or less!)
than 3 replicates. So, the framework for up to 5 replicates has been created using
comments, and you should modify the script accordingly. Also, it is important to
use absolute paths for the script, so no tildes in place of /username/home !

Plotting Averages for RMSD (etc.) using R and gnuplot PDF last generated: October 07, 2021

Analysis Guide User Guide Page 10

https://cran.r-project.org/mirrors.html

rmagic-rmsd-rmsf-hbond-5.r

Plotting Averages for RMSD (etc.) using R and gnuplot PDF last generated: October 07, 2021

Analysis Guide User Guide Page 11

Run this with "Rscript rmagic-rmsd-rmsf-hbond-5.r"
(Assuming you've already installed R...)

#---#
#--Specify the paths to the Files from cpptraj--#
#---#

This script has been pre-built for 2 systems with 3 replicat
es
More or less than 3 reps (up to 5) can be achieved through
Commenting or uncommenting

Paths to the RMSD files
Set A (system 1)
infile1A <- Sys.glob("/absolute/path/to/the/analysis/files/fo
r/ WT-System-1/WT_protein_system_total_bb_rms.dat")
infile2A <- Sys.glob("/absolute/path/to/the/analysis/files/fo
r/ WT-System-2/WT_protein_system_total_bb_rms.dat")
infile3A <- Sys.glob("/absolute/path/to/the/analysis/files/fo
r/ WT-System-3/WT_protein_system_total_bb_rms.dat")
#infile4A <- Sys.glob("/absolute/path/to/the/analysis/files/fo
r/ WT-System-4/WT_protein_system_total_bb_rms.dat")
#infile5A <- Sys.glob("/absolute/path/to/the/analysis/files/fo
r/ WT-System-5/WT_protein_system_total_bb_rms.dat")

##Set B (system 2)
infile1B <- Sys.glob("/absolute/path/to/the/analysis/files/fo
r/ MUT-A-System-1/MUT_A_system_total_bb_rms.dat")
infile2B <- Sys.glob("/absolute/path/to/the/analysis/files/fo
r/ MUT-A-System-2/MUT_A_system_total_bb_rms.dat")
infile3B <- Sys.glob("/absolute/path/to/the/analysis/files/fo
r/ MUT-A-System-3/MUT_A_system_total_bb_rms.dat")
#infile4B <- Sys.glob("/absolute/path/to/the/analysis/files/fo
r/ MUT-A-System-4/MUT_A_system_total_bb_rms.dat")
#infile5B <- Sys.glob("/absolute/path/to/the/analysis/files/fo
r/ MUT-A-System-5/MUT_A_system_total_bb_rms.dat")

Paths to the RMSF files
Set A (system 1)
infile1AF <- Sys.glob("/absolute/path/to/the/analysis/files/fo
r/ WT-System-1/WT_protein_system_rmsf_byres.dat")
infile2AF <- Sys.glob("/absolute/path/to/the/analysis/files/fo
r/ WT-System-2/WT_protein_system_rmsf_byres.dat")
infile3AF <- Sys.glob("/absolute/path/to/the/analysis/files/fo
r/ WT-System-3/WT_protein_system_rmsf_byres.dat")

Plotting Averages for RMSD (etc.) using R and gnuplot PDF last generated: October 07, 2021

Analysis Guide User Guide Page 12

#infile4AF <- Sys.glob("/absolute/path/to/the/analysis/files/fo
r/ WT-System-4/WT_protein_system_rmsf_byres.dat")
#infile5AF <- Sys.glob("/absolute/path/to/the/analysis/files/fo
r/ WT-System-5/WT_protein_system_rmsf_byres.dat")

infile1BF <- Sys.glob("/absolute/path/to/the/analysis/files/fo
r/ MUT-A-System-1/MUT_A_system_rmsf_byres.dat")
infile2BF <- Sys.glob("/absolute/path/to/the/analysis/files/fo
r/ MUT-A-System-2/MUT_A_system_rmsf_byres.dat")
infile3BF <- Sys.glob("/absolute/path/to/the/analysis/files/fo
r/ MUT-A-System-3/MUT_A_system_rmsf_byres.dat")
#infile4BF <- Sys.glob("/absolute/path/to/the/analysis/files/fo
r/ MUT-A-System-4/MUT_A_system_rmsf_byres.dat")
#infile5BF <- Sys.glob("/absolute/path/to/the/analysis/files/fo
r/ MUT-A-System-5/MUT_A_system_rmsf_byres.dat")

Paths to the H-Bond files
Set A (system 1)
infile1AH <- Sys.glob("/absolute/path/to/the/analysis/files/fo
r/ WT-System-1/WT_protein_system_hbond.dat")
infile2AH <- Sys.glob("/absolute/path/to/the/analysis/files/fo
r/ WT-System-2/WT_protein_system_hbond.dat")
infile3AH <- Sys.glob("/absolute/path/to/the/analysis/files/fo
r/ WT-System-3/WT_protein_system_hbond.dat")
#infile4AH <- Sys.glob("/absolute/path/to/the/analysis/files/fo
r/ WT-System-4/WT_protein_system_hbond.dat")
#infile5AH <- Sys.glob("/absolute/path/to/the/analysis/files/fo
r/ WT-System-5/WT_protein_system_hbond.dat")

##Set B (system 2)
infile1BH <- Sys.glob("/absolute/path/to/the/analysis/files/fo
r/ MUT-A-System-1/MUT_A_system_hbond.dat")
infile2BH <- Sys.glob("/absolute/path/to/the/analysis/files/fo
r/ MUT-A-System-2/MUT_A_system_hbond.dat")
infile3BH <- Sys.glob("/absolute/path/to/the/analysis/files/fo
r/ MUT-A-System-3/MUT_A_system_hbond.dat")
#infile4BH <- Sys.glob("/absolute/path/to/the/analysis/files/fo
r/ MUT-A-System-4/MUT_A_system_hbond.dat")
#infile5BH <- Sys.glob("/absolute/path/to/the/analysis/files/fo
r/ MUT-A-System-5/MUT_A_system_hbond.dat")

#-----------------------------#
#--Define your outfile names--#
#-----------------------------#

Plotting Averages for RMSD (etc.) using R and gnuplot PDF last generated: October 07, 2021

Analysis Guide User Guide Page 13

A is for infiles labeled A
Each system gets an averaged file
That is then used to plot with gnuplot
RMSDA <- "WT_protein_system_total_bb_rms_avgd.dat"
RMSDB <- "MUT_A_system_total_bb_rms_avgd.dat"

RMSFA <- "WT_protein_system_rmsf_byres_avgd.dat"
RMSFB <- "MUT_A_system_rmsf_byres_avgd.dat"

HBONDA <- "WT_protein_system_hbond_3trial_avgd.dat"
HBONDB <- "MUT_A_system_hbond_3trial_avgd.dat"

#--
-----#
#-------Behind the Curtain: No Need to Modify Past This Lin
e-------#
#--
-----#

Use the data tables package to read in data frames
Remove comment to install locally
#install.packages("data.table")
library(data.table)

Use the abind package to combine data frames
Remove comment to install locally
#install.packages("abind")
library(abind)

#-------------------#
#--Begin with RMSD--#
#-------------------#

Reading each file as a data.table.
Bonus - fread is much faster than read.csv
read1A <- fread(infile1A, header=TRUE)
read2A <- fread(infile2A, header=TRUE)
read3A <- fread(infile3A, header=TRUE)
#read4A <- fread(infile4A, header=TRUE)
#read5A <- fread(infile5A, header=TRUE)

read1B <- fread(infile1B, header=TRUE)
read2B <- fread(infile2B, header=TRUE)
read3B <- fread(infile3B, header=TRUE)
#read4B <- fread(infile4B, header=TRUE)

Plotting Averages for RMSD (etc.) using R and gnuplot PDF last generated: October 07, 2021

Analysis Guide User Guide Page 14

#read5B <- fread(infile5B, header=TRUE)

Combine into one dataset
Use both columns 1A and second column only for 2A and 3A
Note: this makes it a matrix
combineA = abind(read1A, read2A[,2], read3A[,2], along=2)
#combineA = abind(read1A, read2A[,2], read3A[,2], read4A[,2], r
ead5A[,2], along=2)

combineB = abind(read1B, read2B[,2], read3B[,2], along=2)
#combineB = abind(read1B, read2B[,2], read3B[,2], read4B[,2], r
ead5B[,2], along=2)

Change the column names so future life makes sense
Your data are now Frame, infile1A RMSD, infile2A RMSD, infil
e3A RMSD
colnames(combineA) <- c("Frame", "RMSD1", "RMSD2", "RMSD3")
#colnames(combineA) <- c("Frame", "RMSD1", "RMSD2", "RMSD3", "R
MSD4", "RMSD5")

colnames(combineB) <- c("Frame", "RMSD1", "RMSD2", "RMSD3")
#colnames(combineB) <- c("Frame", "RMSD1", "RMSD2", "RMSD3", "R
MSD4", "RMSD5")

Redefine as a data frame
combineA <- as.data.frame(combineA)

combineB <- as.data.frame(combineB)

Append a column that's the average of RMSD cols
combineA$Average <- rowMeans(combineA[,2:4])
#combineA$Average <- rowMeans(combineA[,2:6])

combineB$Average <- rowMeans(combineB[,2:4])
#combineB$Average <- rowMeans(combineB[,2:6])

Append a column that's the STDEV of RMSD cols
The 1 means you're applying one function
Which is the standard deviation function, sd
combineA$STDEV <- apply(combineA[,2:4], 1, sd)
#combineA$STDEV <- apply(combineA[,2:6], 1, sd)

combineB$STDEV <- apply(combineB[,2:4], 1, sd)
#combineB$STDEV <- apply(combineB[,2:6], 1, sd)

Plotting Averages for RMSD (etc.) using R and gnuplot PDF last generated: October 07, 2021

Analysis Guide User Guide Page 15

Create a new variable with just Frame, Average, and STDEV
save_cols_A <- combineA[,c("Frame", "Average", "STDEV")]

save_cols_B <- combineB[,c("Frame", "Average", "STDEV")]

Limit to 4 sig figs after decimal
save_cols_clean_A <- format(save_cols_A, digits=4)

save_cols_clean_B <- format(save_cols_B, digits=4)

#--
--------#
#---------------------------RMSD OUTFILE
S--------------------------#
#--
--------#

Now write a tab-delimited outfile!
Don't care about the index rownames because that's the frame
write.table(save_cols_clean_A, file = RMSDA, sep="\t", row.name
s=FALSE, quote=FALSE)

write.table(save_cols_clean_B, file = RMSDB, sep="\t", row.name
s=FALSE, quote=FALSE)

#----------------------#
#--CONTINUE WITH RMSF--#
#----------------------#

Reading each file as a data.table.
Bonus - fread is much faster than read.csv
read1AF <- fread(infile1AF, header=TRUE)
read2AF <- fread(infile2AF, header=TRUE)
read3AF <- fread(infile3AF, header=TRUE)
#read4AF <- fread(infile4AF, header=TRUE)
#read5AF <- fread(infile5AF, header=TRUE)

read1BF <- fread(infile1BF, header=TRUE)
read2BF <- fread(infile2BF, header=TRUE)
read3BF <- fread(infile3BF, header=TRUE)
#read4BF <- fread(infile4BF, header=TRUE)
#read5BF <- fread(infile5BF, header=TRUE)

Combine into one dataset
Use both columns 1A and second column only for 2A and 3A

Plotting Averages for RMSD (etc.) using R and gnuplot PDF last generated: October 07, 2021

Analysis Guide User Guide Page 16

Note: this makes it a matrix
combineAF = abind(read1AF, read2AF[,2], read3AF[,2], along=2)
#combineAF = abind(read1AF, read2AF[,2], read3AF[,2], read4A
F[,2], read5AF[,2], along=2)

combineBF = abind(read1BF, read2BF[,2], read3BF[,2], along=2)
#combineBF = abind(read1BF, read2BF[,2], read3BF[,2], read4B
F[,2], read5BF[,2], along=2)

Change the column names so future life makes sense
Your data are now Residue, infile1A RMSF, infile2A RMSF, inf
ile3A RMSF
colnames(combineAF) <- c("Residue", "RMSF1", "RMSF2", "RMSF3")
#colnames(combineAF) <- c("Residue", "RMSF1", "RMSF2", "RMSF
3", "RMSF4", "RMSF5")

colnames(combineBF) <- c("Residue", "RMSF1", "RMSF2", "RMSF3")
#colnames(combineBF) <- c("Residue", "RMSF1", "RMSF2", "RMSF
3", "RMSF4", "RMSF5")

Redefine as a data frame
combineAF <- as.data.frame(combineAF)

combineBF <- as.data.frame(combineBF)

Append a column that's the average of RMSD cols
combineAF$Average <- rowMeans(combineAF[,2:4])
#combineAF$Average <- rowMeans(combineAF[,2:6])

combineBF$Average <- rowMeans(combineBF[,2:4])
#combineBF$Average <- rowMeans(combineBF[,2:6])

Append a column that's the STDEV of RMSD cols
The 1 means you're applying one function
Which is the standard deviation function, sd
combineAF$STDEV <- apply(combineAF[,2:4], 1, sd)
#combineAF$STDEV <- apply(combineAF[,2:6], 1, sd)

combineBF$STDEV <- apply(combineBF[,2:4], 1, sd)
#combineBF$STDEV <- apply(combineBF[,2:6], 1, sd)

Create a new variable with just Frame, Average, and STDEV
save_cols_AF <- combineAF[,c("Residue", "Average", "STDEV")]

save_cols_BF <- combineBF[,c("Residue", "Average", "STDEV")]

Plotting Averages for RMSD (etc.) using R and gnuplot PDF last generated: October 07, 2021

Analysis Guide User Guide Page 17

Limit to 4 sig figs after decimal
save_cols_clean_AF <- format(save_cols_AF, digits=4)

save_cols_clean_BF <- format(save_cols_BF, digits=4)

#--
--------#
#---------------------------RMSF OUTFILE
S--------------------------#
#--
--------#

Now write a tab-delimited outfile!
Don't care about the index rownames because that's the resid
ue number
write.table(save_cols_clean_AF, file = RMSFA, sep="\t", row.nam
es=FALSE, quote=FALSE)

write.table(save_cols_clean_BF, file = RMSFB, sep="\t", row.nam
es=FALSE, quote=FALSE)

#------------------------#
#--CONTINUE WITH H-BOND--#
#------------------------#

Reading each file as a data.table.
Bonus - fread is much faster than read.csv
read1AH <- fread(infile1AH, header=TRUE)
read2AH <- fread(infile2AH, header=TRUE)
read3AH <- fread(infile3AH, header=TRUE)
#read4AH <- fread(infile4AH, header=TRUE)
#read5AH <- fread(infile5AH, header=TRUE)

read1BH <- fread(infile1BH, header=TRUE)
read2BH <- fread(infile2BH, header=TRUE)
read3BH <- fread(infile3BH, header=TRUE)
#read4BH <- fread(infile4BH, header=TRUE)
#read5BH <- fread(infile5BH, header=TRUE)

Combine into one dataset
Use both columns 1A and second column only for 2A and 3A
Note: this makes it a matrix
combineAH = abind(read1AH, read2AH[,2], read3AH[,2], along=2)

Plotting Averages for RMSD (etc.) using R and gnuplot PDF last generated: October 07, 2021

Analysis Guide User Guide Page 18

#combineAH = abind(read1AH, read2AH[,2], read3AH[,2], read4A
H[,2], read5AH[,2], along=2)

combineBH = abind(read1BH, read2BH[,2], read3BH[,2], along=2)
#combineBH = abind(read1BH, read2BH[,2], read3BH[,2], read4B
H[,2], read5BH[,2], along=2)

Change the column names so future life makes sense
Your data are now Frame, infile1A HB, infile2A HB, infile3A
HB
colnames(combineAH) <- c("Frame", "HB1", "HB2", "HB3")
#colnames(combineAH) <- c("Frame", "HB1", "HB2", "HB3", "HB4",
"HB5")

colnames(combineBH) <- c("Frame", "HB1", "HB2", "HB3")
#colnames(combineBH) <- c("Frame", "HB1", "HB2", "HB3", "HB4",
"HB5")

Redefine as a data frame
combineAH <- as.data.frame(combineAH)

combineBH <- as.data.frame(combineBH)

Append a column that's the average of RMSD cols
combineAH$Average <- rowMeans(combineAH[,2:4])
#combineAH$Average <- rowMeans(combineAH[,2:6])

combineBH$Average <- rowMeans(combineBH[,2:4])
#combineBH$Average <- rowMeans(combineBH[,2:6])

Append a column that's the STDEV of RMSD cols
The 1 means you're applying one function
Which is the standard deviation function, sd
combineAH$STDEV <- apply(combineAH[,2:4], 1, sd)
#combineAH$STDEV <- apply(combineAH[,2:6], 1, sd)

combineBH$STDEV <- apply(combineBH[,2:4], 1, sd)
#combineBH$STDEV <- apply(combineBH[,2:6], 1, sd)

Create a new variable with just Frame, Average, and STDEV
save_cols_AH <- combineAH[,c("Frame", "Average", "STDEV")]

save_cols_BH <- combineBH[,c("Frame", "Average", "STDEV")]

Limit to 4 sig figs after decimal

Plotting Averages for RMSD (etc.) using R and gnuplot PDF last generated: October 07, 2021

Analysis Guide User Guide Page 19

save_cols_clean_AH <- format(save_cols_AH, digits=4)

save_cols_clean_BH <- format(save_cols_BH, digits=4)

#--
----------#
#------------------------H-BOND OUTFILE
S---------------------------#
#--
----------#

Now write a tab-delimited outfile!
Don't care about the index rownames because that's the frame

write.table(save_cols_clean_AH, file = HBONDA, sep="\t", row.na
mes=FALSE, quote=FALSE)

write.table(save_cols_clean_BH, file = HBONDB, sep="\t", row.na
mes=FALSE, quote=FALSE)

Now that that’s over, we can once again plot it using gnuplot. This script also
plots the standard deviation, which is why there are three parts of information
being processed. It looks like you’re plotting the same thing 3 times per graph.
You are, in a way. Because gnuplot does key naming weirdly, you have to first plot
the line you care about with the title for the key. Then you plot the standard
deviation curves. That’s dataset one. Then you plot dataset two. Finally, you plot
those original curves again, because otherwise they’re buried by the standard
deviation plots. It’s not counterintuitive, but it looks decent.

The reason behind this craziness is that gnuplot literally just stacks each plotted
line over the others without any thought about what’s being buried–whatever was
plot last is on top. Think of it like a sandwich–if you put the peanut butter on the
bread, you can’t really see the full slice of bread anymore. You know that it is
there, because you see the outline, but the entire piece of bread is obscured by
the peanut butter. This gets worse as you add the jelly and the other slice of
bread. The second piece of bread hides any pattern in the peanut butter or jelly.
Now you probably get why you have to trick gnuplot.

Plotting Averages for RMSD (etc.) using R and gnuplot PDF last generated: October 07, 2021

Analysis Guide User Guide Page 20

avg-rmsd-etc.gnu

Plotting Averages for RMSD (etc.) using R and gnuplot PDF last generated: October 07, 2021

Analysis Guide User Guide Page 21

set encoding iso_8859_1
set term postscript enhanced color font "Arial,24";

set xlabel "Time (ns)"
set ylabel "RMSD ({\305})"
set key right bottom Left reverse maxrows 2
#set yrange [1.5:4]

Other Berendsen inputs are $1/500, these Langevin are $1/100
set output "rmsds-avg.eps";
plot "WT_protein_system_total_bb_rms_avgd.dat" u ($1/100):($2)
w lines s bezier t "Wild Type" ls 1 lw 4, \
"WT_protein_system_total_bb_rms_avgd.dat" u ($1/10
0):($2+$3):($2-$3) w filledcurve fs solid 0.15 t "Std. Dev." l
s 1, \
"MUT_A_system_total_bb_rms_avgd.dat" u ($1/100):($2) w lines s
bezier t "Mutation A" ls 2 lw 4, \
"MUT_A_system_total_bb_rms_avgd.dat" u ($1/10
0):($2+$3):($2-$3) w filledcurve fs solid 0.15 t "Std. Dev." l
s 2, \
"WT_protein_system_total_bb_rms_avgd.dat" u ($1/100):($2) w lin
es s bezier notitle ls 1 lw 4, \
"MUT_A_system_total_bb_rms_avgd.dat" u ($1/100):($2) w lines s
bezier notitle ls 2 lw 4;

set xlabel "Time (ns)"
set ylabel "Number of hydrogen bonds"
#set key left bottom Left reverse

Other Berendsen inputs are $1/500, these Langevin are $1/100
set output "hbonds-avg.eps";
plot "WT_protein_system_hbond_3trial_avgd.dat" u ($1/100):($2)
w lines s bezier t "Wild Type" ls 1 lw 4, \
"WT_protein_system_hbond_3trial_avgd.dat" u ($1/10
0):($2+$3):($2-$3) w filledcurve fs solid 0.15 t "Std. Dev." l
s 1, \
"MUT_A_system_hbond_3trial_avgd.dat" u ($1/100):($2) w lines s
bezier t "Mutation A" ls 2 lw 4, \
"WT_protein_system_hbond_3trial_avgd.dat" u ($1/10
0):($2+$3):($2-$3) w filledcurve fs solid 0.15 t "Std. Dev." l
s 2, \
"MUT_A_system_hbond_3trial_avgd.dat" u ($1/100):($2) w lines s
bezier notitle ls 1 lw 4, \
"MUT_A_system_hbond_3trial_avgd.dat" u ($1/100):($2) w lines s
bezier notitle ls 2 lw 4;

Plotting Averages for RMSD (etc.) using R and gnuplot PDF last generated: October 07, 2021

Analysis Guide User Guide Page 22

set xlabel "Residue number"
set ylabel "RMSF ({\305})"
set key left top Left reverse maxrows 2
#set yrange [0:7]
set xrange [0:455]

set output "rmsf-avg.eps";
plot "WT_protein_system_rmsf_byres_avgd.dat" u ($1):($2) w line
s t "Wild Type" ls 1 lw 4, \
"WT_protein_system_rmsf_byres_avgd.dat" u ($1):($2+$3):($2-$3)
w filledcurve fs solid 0.15 t "Std. Dev." ls 1, \
"MUT_A_system_hbond_3trial_avgd.dat" u ($1):($2) w lines t "Mut
ation A" ls 2 lw 4, \
"MUT_A_system_hbond_3trial_avgd.dat" u ($1):($2+$3):($2-$3) w f
illedcurve fs solid 0.15 t "Std. Dev." ls 2, \
"WT_protein_system_rmsf_byres_avgd.dat" u ($1):($2) w lines not
itle ls 1 lw 4, \
"MUT_A_system_hbond_3trial_avgd.dat" u ($1):($2) w lines notitl
e ls 2 lw 4;

Plotting Averages for RMSD (etc.) using R and gnuplot PDF last generated: October 07, 2021

Analysis Guide User Guide Page 23

parmed
If you’ve made the mistake of stripping all the water from a protein that had some
crystal waters prior to solvation, you can generated a stripped topology file using
parmed.

To do this follow:

$ $AMBERHOME/bin/parmed
> parm WT_protein_system_wat.prmtop
> strip :WAT,K+
> outparm strip.WT_protein_system_wat.prmtop
> quit

The bright side to having to use parmed is that you get to see some really
adorable ASCII art.

There’s plenty more that parmed can do, so check out the documentation (and, if
you use Python, the Python package).

parmed PDF last generated: October 07, 2021

Analysis Guide User Guide Page 24

https://github.com/ParmEd/ParmEd

Hydrogen Bond Analysis (HBA)
cpptraj can be used to determine how long hydrogen bonds are present in a
simulation using hbond .

Hydrogen bonds are a non-covalent structural force between a hydrogen atom
and a nitrogen, oxygen, or fluorine atom. These hydrogen bonds arise because of
the attraction between the hydrogen and the electronegative atom.

The data provided in the WT_protein_system_hbond_avg.dat data file contains
the average length of simulation time that a hydrogen bond is present, defined
through a distance of 3.0 Å.

Once those bonds have been singled out using cpptraj, then they can be further
assessed through a program like Excel or LibreOffice Calc, or through scripting.
Open the data file in a spreadsheet, ensuring that you will not be modifying the
original .dat file. The columns pertinent to analysis are #Acceptor (the atom
connected to the accepting hydrogen), Donor (the donating electronegative
atom), and Frac (the fraction of the simulation that the bond is present for; 1
corresponds to 100%). After deleting the irrelevant columns (DonorH, Frames,
and AvgDist), then you can sort the bonds by fraction, taking care to keep the
donor and acceptor columns matched. Sorting by size allows for the removal of
bonds that are unhelpful, which would be anything occurring less than 1% (0.001)
of the simulation time. Delete those less than 0.001, and then sort the columns
through

1. Alphabetically by #Acceptor

2. Alphabetically by DonorH

3. Numerically by AvgDist

All three options should be specified, because sometimes the hydrogen bond will
appear, dissappear, and reappear, all of which are not intrinsically recognized
through the averaging that cpptraj performs.

The actual analysis then has a few schools of thought. The first, is that different
acceptors and donors of the same residue type are what you should be looking
for, and thus you can take the sum of anything with those two specific residues in
those respective positions. The other is that individual hydrogen bonds matter,
and thus only things with the exact same name in the two columns should be
added together. Overall, it depends on what goal is set for the analysis, or what
argument that is trying to be made.

After the determination is made between by residue or by hydrogen, then you can
begin comparison in whatever means you’re going for. If you’re comparing the
bonding between complex A and complex B, then you would first sum all the

Hydrogen Bond Analysis (HBA) PDF last generated: October 07, 2021

Analysis Guide User Guide Page 25

relevant bonds in the individual complexes, before matching line by line for
specific residues/hydrogens. Once the two complexes are matched, then you can
take the difference, and color or denote important changes in whatever manner
makes sense in the spreadsheet. As an example, I performed something like that
in the table below (page 26), where green shown matches within 30%, red show
major changes of over 30%, purple corresponded to residues in one complex but
not the other, and yellow corresponded to a residue that was changed between
complexes (the SNP position).

Table: Example HBA Table

Complex A Complex B

#Acceptor Donor Frac #Acceptor Donor Frac

ALA_269@O PHE_273@N 0.1748 ALA_269@O PHE_273@N 0.1645

ALA_269@O LEU_313@N 0.1748

ALA_356@O SER_312@N 0.0324 ALA_356@O SER_312@N 0.6705

ALA_356@O SER_360@N 0.5218 ALA_356@O SER_360@N 0.7717

HBA Averaging with R
As previously mentioned, the data that comes out of cpptraj can contain lines that
have the same hydrogen bond for different lengths of time, and these need to be
summed. This can be a tedious process, and also makes it difficult to average
across simulations, since they may or may not have the exact same bonds. R is
powerful enough to deal with this, and can thus be used to tidy up and average
hydrogen bonding data for a simulation.

rmagic-hbond-avg-stringfix.r

Hydrogen Bond Analysis (HBA) PDF last generated: October 07, 2021

Analysis Guide User Guide Page 26

Run this with "Rscript rmagic-hbond-avg-stringfix.r"
(Assuming you've already installed R...)

#---#
#--Specify the paths to the Files from cpptraj--#
#---#

This script has been pre-built for a system with 3 replicate
s
More or less than 3 reps (up to 5) can be achieved through
Commenting or uncommenting

Paths to the Hbond-avg files
Set A (system 1)
infile1A <- Sys.glob("/absolute/path/to/the/analysis/files/for/
WT-System-1/WT_protein_system_hbond_avg.dat")
infile2A <- Sys.glob("/absolute/path/to/the/analysis/files/for/
WT-System-2/WT_protein_system_hbond_avg.dat")
infile3A <- Sys.glob("/absolute/path/to/the/analysis/files/for/
WT-System-3/WT_protein_system_hbond_avg.dat")
#infile4A <- Sys.glob("/absolute/path/to/the/analysis/files/fo
r/WT-System-4/WT_protein_system_hbond_avg.dat")
#infile5A <- Sys.glob("/absolute/path/to/the/analysis/files/fo
r/WT-System-5/WT_protein_system_hbond_avg.dat")

#-----------------------------#
#--Define your outfile names--#
#-----------------------------#

A is for infiles labeled A
Each system gets an averaged file
That is then used with the H bond analysis script

A_avg <- "/absolute/path/to/the/averaged/file/WT-System_total_h
bond_avg_fs_double.dat"

Explicitly set the number of the SNP/changed residue to matc
h
This uses a regex to match with any characters before the _
So ABC_100@O would become Changed_ResA@O
Therefore you won't miss things at an atom-level by computin
g the residue
fix_stringA <- ".*_100"
fixed_stringA <-"Changed_ResA"

Hydrogen Bond Analysis (HBA) PDF last generated: October 07, 2021

Analysis Guide User Guide Page 27

fix_stringB <- ".*_200"
fixed_stringB <-"Changed_ResB"

How many data sets to add (use 4 after decimal)
sets <- 3.0000
#sets <- 5.0000

#--
--------#
#---------Behind the Curtain: No Need to Modify Past This Lin
e---------#
#--
--------#

Use the data tables package to read in data frames
Remove comment to install locally
#install.packages("data.table")
library(data.table)

Use the tidyverse package to perform string replacement
Remove comment to install locally
#install.packages("tidyverse")
library(tidyverse)

Turn off scientific notation
options(scipen = 999)

#-------------------------#
#--Read in Hbond Scripts--#
#-------------------------#

Reading each file as a data.table.
Bonus - fread is much faster than read.csv
read1A <- fread(infile1A, header=TRUE)
read2A <- fread(infile2A, header=TRUE)
read3A <- fread(infile3A, header=TRUE)
#read4A <- fread(infile4A, header=TRUE)
#read5A <- fread(infile5A, header=TRUE)

colnames(read1A) <- c("Acceptor", "DonorH", "Donor", "Frames",
"Frac", "AvgDist", "AvgAng")
colnames(read2A) <- c("Acceptor", "DonorH", "Donor", "Frames",
"Frac", "AvgDist", "AvgAng")
colnames(read3A) <- c("Acceptor", "DonorH", "Donor", "Frames",
"Frac", "AvgDist", "AvgAng")

Hydrogen Bond Analysis (HBA) PDF last generated: October 07, 2021

Analysis Guide User Guide Page 28

#colnames(read4A) <- c("Acceptor", "DonorH", "Donor", "Frame
s", "Frac", "AvgDist", "AvgAng")
#colnames(read5A) <- c("Acceptor", "DonorH", "Donor", "Frame
s", "Frac", "AvgDist", "AvgAng")

Combine all the datasets into 1
bound <- rbind(read1A, read2A, read3A)
#bound <- rbind(read1A, read2A, read3A, read4A, read5A)

bound$Acceptor <- as.character(bound$Acceptor)
bound$DonorH <- as.character(bound$DonorH)
bound$Donor <- as.character(bound$Donor)
bound$Frac <- as.numeric(bound$Frac)
bound$Frames <- as.numeric(bound$Frames)
bound$AvgDist <- as.numeric(bound$AvgDist)
bound$AvgAng <- as.numeric(bound$AvgAng)

Deal with the string
clean_boundA <- mutate_if(bound, is.character, str_replace_al
l, pattern=fix_stringA, replacement=fixed_stringA)

Deal with the other string
clean_boundB <- mutate_if(clean_boundA, is.character, str_repla
ce_all, pattern=fix_stringB, replacement=fixed_stringB)

Collapse repeat lines into themselves (i.e. add numbers toge
ther)
superbound <- aggregate(data=clean_boundB, cbind(Frames,Frac,Av
gDist,AvgAng)~Acceptor+Donor, FUN=sum)

If DonorH matters, then use:
#superbound2 <- aggregate(data=bound, cbind(Frames,Frac,AvgDis
t,AvgAng)~Acceptor+DonorH+Donor, FUN=sum)

Get average based on number of sets combined [This if for 3]
superbound$AvgFrame <- format(superbound$Frames / sets, digit
s=4, format="f")
superbound$AvgFrac <- format(superbound$Frac / sets, digits=4,
format="f")
superbound$AAvgDist <- format(superbound$AvgDist / sets, digit
s=4, format="f")
superbound$AAvgAng <- format(superbound$AvgAng / sets, digit
s=4, format="f")

save_cols_AH <- superbound[,c("Acceptor", "Donor", "AvgFrac")]

Hydrogen Bond Analysis (HBA) PDF last generated: October 07, 2021

Analysis Guide User Guide Page 29

Limit to 4 sig figs after decimal
save_cols_clean_AH <- format(save_cols_AH, digits=4)

colnames(save_cols_clean_AH) <- c("Acceptor", "Donor ", "Av
gFrac")

Now write a tab-delimited outfile!
Don't care about the index rownames
#write.table(save_cols_clean_AH, file = A_avg, sep="\t", row.na
mes=FALSE, quote=FALSE)

Write a pseudo-fixed width outfile
capture.output(print(save_cols_clean_AH, print.gap=3, row.name
s=FALSE), file = A_avg)

From here, you can use the HBA shell script. It won’t have the listed issue of only
being effective on single trials (since you just averaged them ?).

HBA: the Shell Script
As you can already tell, HBA is… tedious. So, it’s been semi-scripted to identify
what may be key residues between two systems. When using the following script
as a stand-alone (and not using the previous R script (page 26) with it), here are a
few points of caution:

• Situations where it’ll work effectively:

◦ Comparing single trials of 2 systems

◦ Comparing the averages of 2 systems that have already been
finagled together correctly.

• Situations where there’s still some work that needs to be done:

◦ Adapting it to get the average of 3 systems to be used in the
comparison of 2 averaged systems

There was a lot of talk about averages in there. Averages are important, because
they make your argument stronger. If one system had bond A for 90% of the time
while B had it 2% of the time in trial one, but those are reversed in trial two, you
can’t actually say that bond is important without other structural information (like,
per se, your entire active site being torn to shreds in trial 2, but it being perfectly
intact in trial one). For now, the “smart” way to get the average would be to follow
this set of things with Excel or Libre Office:

1. Open data A trial 1 in sheet alpha.

Hydrogen Bond Analysis (HBA) PDF last generated: October 07, 2021

Analysis Guide User Guide Page 30

2. Copy data A trial 2 to sheet alpha, next to trial 1.

3. Repeat for remaining data A.

4. Insert/delete cells until each row of sheet alpha has matching information.
Blank cells are ok! The words need to be the same.

5. Copy all of the names to one cell column in sheet alpha.

6. Compute the averages in a different cell column [ex: ($A3 + $A6 + $A9)/3]
and copy that formula through for all.

7. Create a new set of columns that are equal to the named column and the
average columns. [ex. In cell A12, do =A1; in cell A13, do =A10].

8. Copy those two columns into a text file and save. Now you have the
averages for one data set!

9. Repeat all of those steps with data B.

10. Run the script with the averages of data A and B! Congratulations on
HBA!

If you’ve used the R script (page 26), however, you don’t need to worry about all
of that! Hooray! And now, without further ado:

Hydrogen Bond Analysis (HBA) PDF last generated: October 07, 2021

Analysis Guide User Guide Page 31

hbond-analysis.sh

Hydrogen Bond Analysis (HBA) PDF last generated: October 07, 2021

Analysis Guide User Guide Page 32

#!/bin/bash

##
Define your 2 datasets
Your h-bond optional cutoff
And your outfile name
##

What two sets are you comparing?
infileA=TET_hedi_5mdC_hbond_avg_WTagain.dat
infileB=TET_5mC_RNA_hbond_avg.dat

List cutoff as a percentage (20 is 20%)
cutoff=20

Tag of differences for outfiles
filename=TET-5mdC-5mC-hbond-avg
setA=TET-hedi-5mdC
setB=TET-5mC-RNA

##
Predefined variables
##

You can change the file names, but
it'll be annoying to change the variables

outfile1A=hbond-clean-1A.tmp
outfile2A=hbond-clean-2A.tmp
outfile3A=hbond-clean-3A.tmp

outfile1B=hbond-clean-1B.tmp
outfile2B=hbond-clean-2B.tmp
outfile3B=hbond-clean-3B.tmp

outfile4AB=hbond-clean-4AB.tmp
outfile5A=hbond-clean-5A.tmp
outfile5B=hbond-clean-5B.tmp
outfile6AB=hbond-clean-6AB.tmp
outfile7AB=hbond-clean-7AB.tmp
outfile8AB=hbond-clean-8AB.tmp
outfile9AB=hbond-clean-9AB.tmp
outfile10AB=$filename-abs-diff.dat

outfile11A=hbond-clean-11A.tmp

Hydrogen Bond Analysis (HBA) PDF last generated: October 07, 2021

Analysis Guide User Guide Page 33

outfile11B=hbond-clean-11B.tmp
outfile12A=hbond-clean-12A.tmp
outfile12B=hbond-clean-12B.tmp

##
Fileset A
Make some files; do some analysis
##

Clean the data. Remove lines less than
1% and print file with the
3 columns you want; keep header
1=Acceptor 3=Donor 5=Frac

awk 'NR == 1 {print $1,$3,$5}; NR > 1 { if ($5>0.0099) print
$1, $3, $5 }' $infileA > $outfile1A

Sum duplicate acceptor/donor columns

awk 'NR == 1; {s1[$1,$2] = $1; s2[$1,$2] = $2; s3[$1,$2] +=
$3} END { for (i in s3) print s1[i], s2[i], s3[i]}' $outfile1A
> $outfile2A

Clean up the output. Make alphabetical order
by acceptor then by donor and print that
in clean columns (with left-aligned AAs)

sort $outfile2A | awk '{ printf "%-15s %-15s %8s\n", $1, $2,
$3 }' > $outfile3A

##
Fileset B
Make some files; do some analysis
##

Clean the data. Remove lines less than
1% and print file with the
3 columns you want; keep header
1=Acceptor 3=Donor 5=Frac

awk 'NR == 1 {print $1,$3,$5}; NR > 1 { if ($5>0.0099) print
$1, $3, $5 }' $infileB > $outfile1B

Sum duplicate acceptor/donor columns

Hydrogen Bond Analysis (HBA) PDF last generated: October 07, 2021

Analysis Guide User Guide Page 34

awk 'NR == 1; {s1[$1,$2] = $1; s2[$1,$2] = $2; s3[$1,$2] +=
$3} END { for (i in s3) print s1[i], s2[i], s3[i]}' $outfile1B
> $outfile2B

Clean up the output. Make alphabetical order
by acceptor then by donor and print that
in clean columns (with left-aligned AAs)

sort $outfile2B | awk '{ printf "%-15s %-15s %8s\n", $1, $2,
$3 }' > $outfile3B

##
Comparison Time
How different are A and B?
##

Get a list of things with matching Acceptor
and Donor columns between the files

awk 'FNR==NR{a[$1,$2];next} (($1,$2) in a)' $outfile3A $outfile
3B | awk '{printf "%-15s %-15s\n", $1, $2}' > $outfile4AB

Get rows with the matches from A & B

awk 'FNR==NR{a[$1,$2];next} (($1,$2) in a)' $outfile4AB $outfil
e3A > $outfile5A
awk 'FNR==NR{a[$1,$2];next} (($1,$2) in a)' $outfile4AB $outfil
e3B > $outfile5B

Print a single file for comparison
1=Acceptor 2=Donor 3=A_Frac 6=B_Frac

paste $outfile5A $outfile5B > $outfile6AB

Get the difference and print it

awk 'NR == 1 { print $1 "\t" $2 "\t\t" "Diff_A-B" }; NR>1, NF
> 0 { print $1 "\t" $2 "\t" ($6 - $3) }' $outfile6AB > $outfile
7AB
(head -n 1 $outfile7AB && tail -n +3 $outfile7AB | cat) > $fil
ename-diff.dat

Give it as absolute difference

awk '{ printf "%-15s %-15s %8s\n", $1, $2, ($3 >=0) ? $3 : 0 -

Hydrogen Bond Analysis (HBA) PDF last generated: October 07, 2021

Analysis Guide User Guide Page 35

$3}' $outfile7AB > $outfile8AB

Sort the file,
keeping the header

(head -n 1 $outfile8AB && tail -n +3 $outfile8AB | sort -Rk 3n
r) > $outfile9AB

Show the difference as a percentage,
keeping the header

awk 'NR == 1 { print $1 "\t" $2 "\t\t" "AbsDiff%" }; NR>1, NF
> 0 { printf "%-15s %-15s %8s\n", $1, $2, $3*100 }' $outfile9A
B > $outfile10AB

Get the cutoff file

awk -v f=$cutoff 'NR == 1; NR > 1 {if ($3> f) print}' $outfile
10AB > $filename-$cutoff-percent-cut.dat

##
No Match List
No match between A&B? No problem.
##

Get full list of no matches
awk 'NR==FNR{a[$1,$2];next} !(($1,$2) in a)' $outfile4AB $outfi
le3A > $outfile11A
awk 'NR==FNR{a[$1,$2];next} !(($1,$2) in a)' $outfile4AB $outfi
le3B > $outfile11B

Print the no matches larger than cutoff
giving it a header

awk -v f=$cutoff 'NR == 1; NR > 1 {if ((100*$3) > f) print}'
$outfile11A > $outfile12A
awk -v f=$cutoff 'NR == 1; NR > 1 {if ((100*$3) > f) print}'
$outfile11B > $outfile12B

Clean the output and give the files

awk 'NR == 1 { print "#Acceptor" "\t" "Donor" "\t\t" "AbsDif
f%" }; NR > 1, NF > 0 { printf "%-15s %-15s %8s\n", $1, $2,
$3*100 }' $outfile12A > $setA-$cutoff-percent-cut-nomatch.dat

Hydrogen Bond Analysis (HBA) PDF last generated: October 07, 2021

Analysis Guide User Guide Page 36

awk 'NR == 1 { print "#Acceptor" "\t" "Donor" "\t\t" "AbsDif
f%" }; NR > 1, NF > 0 { printf "%-15s %-15s %8s\n", $1, $2,
$3*100 }' $outfile12B > $setB-$cutoff-percent-cut-nomatch.dat

Remove the temporary data files
rm hbond-clean*.tmp

In using this script, you set a cutoff of difference between A and B. Like before,
20% is considered significant, with bigger differences being important. You’ll get
three important outfiles–the information with anything exceeding the cutoff, and
files with bonds that aren’t matched between the two systems.

Hydrogen Bond Analysis (HBA) PDF last generated: October 07, 2021

Analysis Guide User Guide Page 37

Correlational Analysis
Correlational analyses are computed through the example cpptraj script through
the following lines:

For correlation matrix
matrix out WT_protein_system_matrix_correl.dat name corr_mat \
byres :1-476 correl

The first matrix line calculates the correlation matrix for the system and outputs
that as a data file.

The second matrix line builds a covariance matrix for the system.

The diagmatrix line will calculate eigenmodes from quasiharmonic analysis
using the generated covariance matrix. In normal human speak, that means the
natural vibration of the system is computed through the application of fancy
physics based on thermodynamics. One hundred vectors were specified to be
calculated.

Plotting Correlation Matrices with Python
First things first: This will make the axes wrong if you try to insert them, which is
why they’re manually added to images following this script.

This script, like most scripts, should be modified based on the correlations that
you are interested in. As it is now, it assumes that this script is in a directory that
contains different directories with the data, and that you’re looking for a specific
residue of interest (here, it’s 436). Python starts counting at 0, so residue 436
shows up as residue 435 in the script. Additionally, the axes need to be set
explicitly. This is currently setup for a system with 455 residues. Thanks to Alice
for matrcorr_graph.py .

Correlational Analysis PDF last generated: October 07, 2021

Analysis Guide User Guide Page 38

matrcorr_graph.py

Correlational Analysis PDF last generated: October 07, 2021

Analysis Guide User Guide Page 39

import numpy as np
import matplotlib.pyplot as plt
import matplotlib as mpl
import statsmodels.api as sm
from tables import *
from matplotlib.colors import LinearSegmentedColormap

data1 = np.genfromtxt("WT-system/WT_protein_system_matrix_corre
l.dat",delimiter=None)
data2 = np.genfromtxt("MUT-A-system/MUT-A-system_matrix_corre
l.dat",delimiter=None)
data3 = np.genfromtxt("MUT-B-system/MUT-B-system_matrix_corre
l.dat",delimiter=None)
data4 = np.genfromtxt("MUT-C-system/MUT-C-system_matrix_corre
l.dat",delimiter=None)

Saving Data
data12 = np.subtract(data1,data2)
data21 = np.subtract(data2,data1)
np.savetxt('WT_minus_MUT-A_436.txt',data12[435],fmt='%1.2f')

data13 = np.subtract(data1,data3)
data31 = np.subtract(data3,data1)
np.savetxt('MUT-A_minus_MUT-B_436.txt',data13[435],fmt='%1.2f')

data14 = np.subtract(data1,data4)
data41 = np.subtract(data4,data1)
np.savetxt('WT_minus_MUT-C_436.txt',data14[435],fmt='%1.2f')

data23 = np.subtract(data2,data3)
data32 = np.subtract(data3,data2)
np.savetxt('MUT-A_minus_MUT-B_436.txt',data23[435],fmt='%1.2f')

data24 = np.subtract(data2,data4)
data42 = np.subtract(data4,data2)
np.savetxt('MUT-A_minus_MUT-D_436.txt',data24[435],fmt='%1.2f')

data34 = np.subtract(data3,data4)
data43 = np.subtract(data4,data3)
np.savetxt('MUT-B_minus_MUT-C_436.txt',data34[435],fmt='%1.2f')

Self Plots

#Explicitly choose where to put x and y ticks
placesx = [0, 100, 200, 300, 400, 455]

Correlational Analysis PDF last generated: October 07, 2021

Analysis Guide User Guide Page 40

placesy = [0, 55, 155, 255, 355, 455]
Note: we're not using the inverted y-axis
so therefore, this starts at bottom left

Define those very x and y tick labels
labelsx = [0, 100, 200, 300, 400, 455]
labelsy = [455, 400, 300, 200, 100, 0]

sm.graphics.plot_corr(data1,normcolor=(-1.0,1.0),cmap='RdYlBu')
ax = plt.gca()
ax.axes.get_xaxis()
ax.set_yticks(placesx)
ax.set_xticklabels(labelsx, fontdict=None, minor=False)
ax.axes.get_yaxis()
ax.set_yticks(placesy)
ax.set_yticklabels(labelsy, fontdict=None, minor=False)
plt.savefig('WT_protein_system_mc.png')
plt.close('WT_protein_system_mc.png')

sm.graphics.plot_corr(data2,normcolor=(-1.0,1.0),cmap='RdYlBu')
ax = plt.gca()
ax.axes.get_xaxis()
ax.set_yticks(placesx)
ax.set_xticklabels(labelsx, fontdict=None, minor=False)
ax.axes.get_yaxis()
ax.set_yticks(placesy)
ax.set_yticklabels(labelsy, fontdict=None, minor=False)
plt.savefig('MUT-A-system_mc.png')
plt.close('MUT-A-system_mc.png')

sm.graphics.plot_corr(data3,normcolor=(-1.0,1.0),cmap='RdYlBu')
ax = plt.gca()
ax.axes.get_xaxis()
ax.set_yticks(placesx)
ax.set_xticklabels(labelsx, fontdict=None, minor=False)
ax.axes.get_yaxis()
ax.set_yticks(placesy)
ax.set_yticklabels(labelsy, fontdict=None, minor=False)
plt.savefig('MUT-B-system_mc.png')
plt.close('MUT-B-system_mc.png')

sm.graphics.plot_corr(data4,normcolor=(-1.0,1.0),cmap='RdYlBu')
ax = plt.gca()
ax.axes.get_xaxis()
ax.set_yticks(placesx)

Correlational Analysis PDF last generated: October 07, 2021

Analysis Guide User Guide Page 41

ax.set_xticklabels(labelsx, fontdict=None, minor=False)
ax.axes.get_yaxis()
ax.set_yticks(placesy)
ax.set_yticklabels(labelsy, fontdict=None, minor=False)
plt.savefig('MUT-C-system_mc.png')
plt.close('MUT-C-system_mc.png')

Actual Cross Plots

sm.graphics.plot_corr(data12,normcolor=(-1.0,1.0),cmap='RdYlB
u')
ax = plt.gca()
ax.axes.get_xaxis()
ax.set_yticks(placesx)
ax.set_xticklabels(labelsx, fontdict=None, minor=False)
ax.axes.get_yaxis()
ax.set_yticks(placesy)
ax.set_yticklabels(labelsy, fontdict=None, minor=False)
plt.savefig('WT_minus_MUT-A_436.png')
plt.close('WT_minus_MUT-A_436.png')

sm.graphics.plot_corr(data21,normcolor=(-1.0,1.0),cmap='RdYlB
u')
ax = plt.gca()
ax.axes.get_xaxis()
ax.set_yticks(placesx)
ax.set_xticklabels(labelsx, fontdict=None, minor=False)
ax.axes.get_yaxis()
ax.set_yticks(placesy)
ax.set_yticklabels(labelsy, fontdict=None, minor=False)
plt.savefig('MUT-A_minus_WT_436.png')
plt.close('MUT-A_minus_WT_436.png')

sm.graphics.plot_corr(data13,normcolor=(-1.0,1.0),cmap='RdYlB
u')
ax = plt.gca()
ax.axes.get_xaxis()
ax.set_yticks(placesx)
ax.set_xticklabels(labelsx, fontdict=None, minor=False)
ax.axes.get_yaxis()
ax.set_yticks(placesy)
ax.set_yticklabels(labelsy, fontdict=None, minor=False)
plt.savefig('WT_minus_MUT-B_436.png')
plt.close('WT_minus_MUT-B_436.png')

Correlational Analysis PDF last generated: October 07, 2021

Analysis Guide User Guide Page 42

sm.graphics.plot_corr(data31,normcolor=(-1.0,1.0),cmap='RdYlB
u')
ax = plt.gca()
ax.axes.get_xaxis()
ax.set_yticks(placesx)
ax.set_xticklabels(labelsx, fontdict=None, minor=False)
ax.axes.get_yaxis()
ax.set_yticks(placesy)
ax.set_yticklabels(labelsy, fontdict=None, minor=False)
plt.savefig('MUT-B_minus_WT_436.png')
plt.close('MUT-B_minus_WT_436.png')

sm.graphics.plot_corr(data24,normcolor=(-1.0,1.0),cmap='RdYlB
u')
ax = plt.gca()
ax.axes.get_xaxis()
ax.set_yticks(placesx)
ax.set_xticklabels(labelsx, fontdict=None, minor=False)
ax.axes.get_yaxis()
ax.set_yticks(placesy)
ax.set_yticklabels(labelsy, fontdict=None, minor=False)
plt.savefig('MUT-A_minus_MUT-C_436.png')
plt.close('MUT-A_minus_MUT-C_436.png')

sm.graphics.plot_corr(data42,normcolor=(-1.0,1.0),cmap='RdYlB
u')
ax = plt.gca()
ax.axes.get_xaxis()
ax.set_yticks(placesx)
ax.set_xticklabels(labelsx, fontdict=None, minor=False)
ax.axes.get_yaxis()
ax.set_yticks(placesy)
ax.set_yticklabels(labelsy, fontdict=None, minor=False)
plt.savefig('MUT-C_minus_MUT-A_436.png')
plt.close('MUT-C_minus_MUT-A_436.png')

sm.graphics.plot_corr(data34,normcolor=(-1.0,1.0),cmap='RdYlB
u')
ax = plt.gca()
ax.axes.get_xaxis()
ax.set_yticks(placesx)
ax.set_xticklabels(labelsx, fontdict=None, minor=False)
ax.axes.get_yaxis()
ax.set_yticks(placesy)
ax.set_yticklabels(labelsy, fontdict=None, minor=False)

Correlational Analysis PDF last generated: October 07, 2021

Analysis Guide User Guide Page 43

plt.savefig('MUT-B_minus_MUT-C_436.png')
plt.close('MUT-B_minus_MUT-C_436.png')

sm.graphics.plot_corr(data43,normcolor=(-1.0,1.0),cmap='RdYlB
u')
ax = plt.gca()
ax.axes.get_xaxis()
ax.set_yticks(placesx)
ax.set_xticklabels(labelsx, fontdict=None, minor=False)
ax.axes.get_yaxis()
ax.set_yticks(placesy)
ax.set_yticklabels(labelsy, fontdict=None, minor=False)
plt.savefig('MUT-C_minus_MUT-B_436.png')
plt.close('MUT-C_minus_MUT-B_436.png')

Modifications to Remove Axis Labels
The following modification can be used to have no axis labels.

sm.graphics.plot_corr(data43,normcolor=(-1.0,1.0),cmap='RdYlB
u')
ax = plt.gca()
ax.axes.get_xaxis().set_visible(False)
ax.axes.get_yaxis().set_visible(False)
plt.savefig('MUT-C_minus_MUT-B_436.png')
plt.close('MUT-C_minus_MUT-B_436.png')

Modifications for (0,0) Origin
The following modification can be used to have a traditional (0,0) origin by
inverting the y-axis.

Correlational Analysis PDF last generated: October 07, 2021

Analysis Guide User Guide Page 44

#Explicitly choose where to put x and y ticks
placesx = [0, 100, 200, 300, 400, 455]
placesy = [0, 55, 155, 255, 355, 455]
Note: we're using the inverted y-axis command
so therefore, this starts at top left

Define those very x and y tick labels
labelsx = [0, 100, 200, 300, 400, 455]
labelsy = [455, 400, 300, 200, 100, 0]

sm.graphics.plot_corr(data43,normcolor=(-1.0,1.0),cmap='RdYlB
u')
ax = plt.gca()
ax.axes.get_xaxis()
ax.set_xticks(placesx)
ax.set_xticklabels(labelsx, fontdict=None, minor=False)
ax.axes.get_yaxis()
ax.set_yticks(placesy)
ax.set_yticklabels(labelsy, fontdict=None, minor=False)
plt.gca().invert_yaxis()
plt.savefig('MUT-C_minus_MUT-B_436.png')
plt.close('MUT-C_minus_MUT-B_436.png')

Correlational Analysis PDF last generated: October 07, 2021

Analysis Guide User Guide Page 45

Backbone Analysis
A lot of systems involve DNA or RNA. Cpptraj can be used to analyze the
backbone structure in a variety of ways. Helpful lessons on nucleic backbone
analysis be found on the Case Group page and on the website for the 3DNA
program .

The different nucleic acid backbone angles, taken from NPTEL .

The different backbone angles can be seen in the figure above. These backbone
angles have been defined through:

#Alpha= :x-1@O3' :x@P :x@O5' :x@C5'
#Beta= :x@P :x@O5' :x@C5' :x@C4'
#Gamma= :x@O5' :x@C5' :x@C4' :x@C3'
#Delta= :x@C5' :x@C4' :x@C3' :x@O3'
#Epsilon= :x@C4' :x@C3' :x@O3' :x+1@P
#Zeta= :x@C3' :x@O3' :x+1@P :x+1@O5'

Chi examples
Pyrimidines (Y)= :x@O4' :x@C1' :x@N1 :x@C2 [C, T, U]
Purines (R)= :x@O4' :x@C1' :x@N9 :x@C4 [A, G]

Thus, using the dihedral command in cpptraj can give you information on these
angles. Specifying a dataset name (ex. alpha449) will allow multiple angles to be
printed to the same out file.

Backbone Analysis PDF last generated: October 07, 2021

Analysis Guide User Guide Page 46

http://casegroup.rutgers.edu/lnotes/BioPhysChem_week5.pdf
http://x3dna.org/
http://x3dna.org/
http://nptel.ac.in/courses/104103018/module4/lec2/3.html

#Residue 449 DG
dihedral alpha449 :448@O3' :449@P :449@O5' :449@C5' out RNA_bac
kbone-449-dihed.dat
dihedral beta449 :449@P :449@O5' :449@C5' :449@C4' out RNA_back
bone-449-dihed.dat
dihedral gamma449 :449@O5' :449@C5' :449@C4' :449@C3' out RNA_b
ackbone-449-dihed.dat
dihedral delta449 :449@C5' :449@C4' :449@C3' :449@O3' out RNA_b
ackbone-449-dihed.dat
dihedral epsilon449 :449@C4' :449@C3' :449@O3' :450@P out RNA_b
ackbone-449-dihed.dat
dihedral zeta449 :449@C3' :449@O3' :450@P :450@O5' out RNA_back
bone-449-dihed.dat
dihedral chi449 :449@O4' :449@C1' :449@N9 :449@C4 out RNA_backb
one-449-dihed.dat

Double-stranded nucleic acids can also be studied with respect to other base
pairs. Information on different base pairs can be gathered by using the nastruct

command in cpptraj. This command will automatically determine what is paired
together, and nonstandard residues can be calculated based on the original base
it was derived from (using resmap . The nastruct command has predetermined
prefixes (BP. ; BPstep. ; and Helix.), but you specify the rest of the filename
and extension after naout . An example is shown below.

nastruct master resrange 431,432,433,434,435,446,447,448,449,45
0 naout master.dat \
resmap 5xC:C calcnohb

Because nastruct will automatically match pairs, the output will need to be
cleaned up before plotting any data. This can be done pretty easily using awk.

$ awk 'NR == 1 || NR % 5 == 2' BP.master.dat > BP-A2-T2.dat
$ awk 'NR == 1 || NR % 4 == 2' BPStep.master.dat > BPstep-A2-C
3.dat
$ awk 'NR == 1 || NR % 4 == 2' Helix.master.dat > Helix-A2-C3.d
at

The NR == 1 will print the first row (the header) and the NR % 4 == 2 will print
every 4th row starting with the second row.

Backbone Analysis PDF last generated: October 07, 2021

Analysis Guide User Guide Page 47

Using 3DNA
Another program that can be used to analyze DNA is 3DNA program . The
program can be downloaded after making an account on the 3DNA forum . A
downside to using 3DNA is that you cannot analyze your entire trajectory–only
snapshots in the form of PDBs. That said, the information is printed very cleanly,
and the analysis takes seconds.

 Tip: Use a clustering analysis (page 53) to help pick your snapshots.

After installation and selecting your snapshots, the following command will be
used to gather information on form, sugar puckering, and more.

$ find_pair WT_protein_system_md50.pdb | analyze

3DNA also has 2 other programs in testing, SNAP and DSSR. Help for any 3DNA
analysis can be acquired by doing the executable name with the -h flag.

Backbone Analysis PDF last generated: October 07, 2021

Analysis Guide User Guide Page 48

http://x3dna.org/
http://forum.x3dna.org/site-announcements/download-instructions/

Secondary Structure
Secondary structure analysis can identify changes in secondary structure across a
simulation or differences between systems. There are several types of secondary
structure, including alpha helices, beta sheets, turns, and loops.

cpptraj has a keyword for secondary structure– secstruct . If your system has
350 protein residues, the command to use would be:

secstruct :1-350 out WT_protein_system_secstruct.gnu

This creates a gnuplot file for plotting the secondary structure (color) for each
residue (y-axis) across time (x-axis). The file that is generated by cpptraj ,
however, is not ideal and may crash gnuplot . That initial gnuplot file can be
modified by using a second script, secstruct-gnu-fix.sh .

Secondary Structure PDF last generated: October 07, 2021

Analysis Guide User Guide Page 49

#!/bin/bash
Written for GNU sed (MacOS needs any -i <> to be -i '' <>)

Name designations, without file extensions
You can use paths
gnu_files="sys1_secstruct.gnu
sys2_secstruct.gnu
sys3_secstruct.gnu"

out_pngs="sys1_secstruct.png
sys2_secstruct.png
sys3_secstruct.png"

Loop through gnu_files and out_pngs, modifying the gnu_file
s appropriately
clean_gnuplot_files()
{
set $out_pngs
for gnu_file in $gnu_files; do

Print out which fileset of all of them that you're on
echo Gnuplot: "$gnu_file" PNG: "$1"

new_lines contains the updated header information for the gn
uplot files.
Update `xrange`, `yrange`, and the `splot (\$1/100)`variable
s with what
you need for your system.
This is set up for custom ytics, but you can toggle the comm
enting
if you don't have an infuriatingly numbered system.
This uses a muted color scheme from https://personal.sron.n
l/~pault/
but you can change it (`set palette defined`).
Use double quotes around everything so that variables get ev
aluated,
with the caveat that all other double quotes must be escaped
(looking at you, ytics).
The $1 refers to $out_pngs being set in fun().
You need \\\\ for the proper number of escapes to print a si
ngle \ with ex
new_lines="set terminal pngcairo size 2560,1920 font \"Helvetic
a,48\";
set size 0.96,1
set encoding iso_8859_1

Secondary Structure PDF last generated: October 07, 2021

Analysis Guide User Guide Page 50

set pm3d map corners2color c1
set xtics nomirror out
#set ytics nomirror
set ytics (\"100\" 0, \"150\" 50, \"200\" 100, \"250\" 150, \"3
00\" 200, \\\\
\"350\" 250, \"400\" 300, \"BR\" 325, \"\" 335, \"1000\" 350,
\"1050\" 400) \\\\
border nomirror out
set cbrange [-0.500: 7.500]
set cbtics 0.000,7.000,1.0
set palette maxcolors 8
set palette defined (0 \"#DDDDDD\",1 \"#AA4499\",2 \"#88225
5\", 3 \"#CC6677\",\\\\
4 \"#DDCC77\",5 \"#999933\", 6 \"#117733\",7 \"#44AA99\")
set cbtics(\"None\" 0.000,\"Para\" 1.000,\"Anti\" 2.00
0,\"3-10\" \\\\
3.000,\"Alpha\" 4.000,\"Pi\" 5.000,\"Turn\" 6.000,\"Be
nd\" 7.000)
set xlabel \"Time (ns)\"
set ylabel \"Residue\"
set yrange [0.000: 430.000]
set xrange [0.000: 200.000]
set output \"${1}\"
splot \"-\" u (\$1/100):2:3 with pm3d notitle"

ex is a command-line version of vi -- the << eof tells it t
o wait until eof
:1,13d deletes the first 13 lines (bad header)
:%s line sets up gnuplot for scripts (pause -1 assumes inter
active gnuplot)
1 insert will insert before the 1st line (inserts everythin
g until . given)
$new_lines is what gets inserted (the {%?} evaluates it)
ex ${gnu_file} << eof
:1,13d
:%s/pause -1/set output/g
1 insert
${new_lines%?}
.
:wq
eof

Increment $out_pngs and exit the function
shift
done

Secondary Structure PDF last generated: October 07, 2021

Analysis Guide User Guide Page 51

}

Set up a function to go through the gnuplot scripts
run_gnuplot()
{

for gnu_file in $gnu_files; do
Print a status report
echo Processing ${gnu_file} now
gnuplot ${gnu_file}

done
}

Run the function
clean_gnuplot_files

Run the gnuplot scripts too, while we're at it
run_gnuplot

Secondary Structure PDF last generated: October 07, 2021

Analysis Guide User Guide Page 52

Clustering
A cluster analysis can be used to group like things. In terms of trajectories, that
means that it can be used to group parts of simulations that share certain
characteristics. Let’s say that in your system, you’re really interested in the
distance between two specific helices. You can use clustering to categorize your
entire simulation time into groups that are based off the distance between them
(i.e., 2-3 Å, 3-4 Å, 4-5 Å, etc).

If you’re looking to do a clustering analysis, it’s probably because you’re thinking
about doing quantum mechanics/molecular mechanics (QM/MM). Thus, you’ll
want to pick your clustering criteria based on what you’re trying to study with QM/
MM. Similarly, you’ll want to generate 10-20 clusters to be used as snapshots for
the QM/MM optimization. These clusters should be based on the the entire
simulation–meaning every replicate.

This example reads in three full replicate trajectories and then autoimages them.
From there, the distance of interest is found and given a tagged label (d1).
Similarly, the root mean square deviation information is found and given the
tagged label rm0 . You can choose to write out either of these by specifying the
data file to save them too. Then, kmeans clustering is done. The first cluster is
given a tag (C0), uses kmeans, writes 10 clusters using data d1 , and then writes
out a bunch of files. These files contain summary information, which frame most
resembles the average, the option to write a representative structure as a PDB file,
and then information on cluster population over time.

Clustering PDF last generated: October 07, 2021

Analysis Guide User Guide Page 53

trajin /absolute/path/to/the/file/WT_protein_system_wat_image
d_1-100.nc
trajin /absolute/path/to/the/file/WT_protein_system_wat_image
d_1-100.nc
trajin /absolute/path/to/the/file/WT_protein_system_wat_image
d_1-100.nc

autoimage

FE-methyl H
distance d1 :455 :436@H11

rms info
#rms rm0 :1-455@CA out WT_protein_system_rms_fromclust.dat
rms rm0 :1-455@CA

k-means based on FE-H11 distance
cluster C0 kmeans clusters 10 data d1 \

info WT_protein_system_H11_clust_detail_info.dat \
out WT_protein_system_H11_clustnum_v_time.dat \
summary WT_protein_system_H11_clust_summary.dat \
avgout WT_cluster_H11 avgfmt pdb cpopvtime WT_protein_syste

m_H11_popvtime.dat

k-means based on FE_H11 and rms
cluster C1 kmeans clusters 10 data rm0,d1 \
info WT_protein_system_H11_rms_clust_detail_info.dat \
out WT_protein_system_H11_rms_clustnum_v_time.dat \
summary WT_protein_system_H11_rms_clust_summary.dat \
avgout WT_cluster_H11_rms avgfmt pdb \
cpopvtime WT_protein_system_H11_rms_popvtime.dat

k-means based on rms distances
cluster C2 kmeans clusters 10 data rm0 \
info WT_protein_system_rms_clust_detail_info.dat \
out WT_protein_system_rms_clustnum_v_time.dat \
summary WT_protein_system_rms_clust_summary.dat \
avgout WT_cluster_rms avgfmt pdb cpopvtime WT_protein_system_r

ms_popvtime.dat

This is by no means the only way to do clustering, and cpptraj has more options
than just kmeans. This website has a really great explanation of different
clustering methods if you’d like to read more.

Clustering PDF last generated: October 07, 2021

Analysis Guide User Guide Page 54

https://dashee87.github.io/data%20science/general/Clustering-with-Scikit-with-GIFs/

Sometimes the PDB that is written out from clustering (if requested) doesn’t look
quite right. That’s because the PDB is an average representation. Thus, it may be
ideal to write out the PDB noted in the summary file as the centroid for the cluster.
This can also be done with cpptraj.

autoimage

Write out the specific PDBs identified with clustering
trajout WT_protein_system_c0_frame_10.pdb pdb onlyframes 10
trajout WT_protein_system_c1_frame_37.pdb pdb onlyframes 37
trajout WT_protein_system_c2_frame_748.pdb pdb onlyframes 748
trajout WT_protein_system_c3_frame_1234.pdb pdb onlyframes 1234
trajout WT_protein_system_c4_frame_5257.pdb pdb onlyframes 5257
trajout WT_protein_system_c5_frame_8924.pdb pdb onlyframes 8924

If you need to use the PDB made with cpptraj for QM/MM with TINKER, then you
will need to recenter it. TINKER is written so that the center of mass is located at
the origin; AMBER centers the mass in the periodic box. So, your cpptraj script
would look like this:

autoimage

TINKER uses origin as COM, by default cpptraj uses box cente
r
For center command, chose a mask that you'd use for cpptraj
analysis
(probably protein, ligands, metals, and DNA/RNA)
center :1-455 origin mass

Write out the specific PDBs identified with clustering
trajout WT_protein_system_com_c0_frame_10.pdb pdb onlyframes 10
trajout WT_protein_system_com_c1_frame_37.pdb pdb onlyframes 37
trajout WT_protein_system_com_c2_frame_748.pdb pdb onlyframes 7
48
trajout WT_protein_system_com_c3_frame_1234.pdb pdb onlyframes
1234
trajout WT_protein_system_com_c4_frame_5257.pdb pdb onlyframes
5257
trajout WT_protein_system_com_c5_frame_8924.pdb pdb onlyframes
8924

Clustering PDF last generated: October 07, 2021

Analysis Guide User Guide Page 55

Custom Settings at Start-Up
Visual Molecular Dynamics (VMD) is a very powerful program (available for Unix,
MacOS X, and Windows) that allows users to visualize their MD data.

VMD allows users to create a .vmdrc file that is sourced the program’s start-up.
This file should be located in your home directory (/home/username).

My .vmdrc file looks like:

display projection orthographic
menu main on
display nearclip set 0
axes location off
color Display Background white
display depthcue off
atomselect macro noh {not (mass 1.008 and charge < 0.25)}
set env(VMDFILECHOOSER) FLTK
color Labels Atoms black
color Labels Bonds black
label textthickness 2.0

The explanation:

• The default projection is “perspective,” which will make things closer to
the screen larger. Instead of a square box in orthographic, perspective is
more of a triangular box shape.

• Using menu main on ensures that you will have the main menu (which is
important if you haven’t memorized the command prompt for every single
thing VMD does) at all times.

• Nearclip controls how distinctly and crisply items pop out of the screen;
the most clean view is achieved at lower values.

• The axes are turned off because they are relative and any generated
images or movies shouldn’t include them.

• The default background color is black. Any images or movies that are
generated should be made with a white background.

• Depthcueing is the front-to-back shading of loaded molecules. When
depthcue is off, there is no shading/automatic transparency.

• The default of VMD removes all hydrogens. By using the atomselect

line, any polar hydrogen atoms are shown.

Custom Settings at Start-Up PDF last generated: October 07, 2021

Analysis Guide User Guide Page 56

http://www.ks.uiuc.edu/Research/vmd/

• FLTK is an independent file chooser that should effectively be the default
for most *nix systems. This line is especially important when using Mac
OS, due to some issues with trying to use a Mac-based file chooser. The
other choice for VMD is TK .

• The default atom labels are green. Black is way easier to see on the white
background.

• The default bond labels are also green. Again, black on white is easier to
read.

• The default labels are thin and hard to read. This makes them bolder.

Custom Settings at Start-Up PDF last generated: October 07, 2021

Analysis Guide User Guide Page 57

Files from the Command Line
VMD has been designed to operate from the command line. This allows files to be
loaded directly at start up. The commands to load a prmtop file and an inpcrd file
that have just been generated would be:

$ vmd -parm7 name_of_file.prmtop -rst7 name_of_file.inpcrd

The -parm7 flag signifies an AMBER7 prmtop and the -rst7 flag signifies an
AMBER7 restart file. Don’t let the AMBER7 scare you–AMBER switched formats
for prmtops and restarts several years ago, and the name stuck around to mean
anything file generated with or after AMBER7. If you wanted to look at a trajectory
that has not had ioutfm explicitly set to 0 in the mdin files when working with
AMBER16 (or later), then you would use:

$ vmd -parm7 name_of_file_wat.prmtop -netcdf name_of_file_wat_m
d25.mdcrd

or for a restart file which has not had ntxo explicitly set to 1 in the mdin files

$ vmd -parm7 name_of_file_wat.prmtop -netcdf name_of_solvated_f
ile_wat_md.rst

The rst file extension is just the last saved trajectory, and the mdcrd file
extension contains all of the trajectory information for that segment (whose time
frame changes based on the input settings). NetCDF is a condensed standardized
format, and is really what these files have been saved as because that is the
default, starting with AMBER16. Previous editions of AMBER wrote the mdcrd

and rst files in ASCII format, and the flag to read those in would be -crd .
PDBs can be loaded with the the -pdb flag.

Files from the Command Line PDF last generated: October 07, 2021

Analysis Guide User Guide Page 58

Changing Your System's Orientation
Have you ever thought to yourself “this is the most confusing thing I’ve ever
thought about, and I wish I could move it around in 3D?” No? Well, apparently
some researchers did at some point, because VMD allows you to rotate the
system and zoom in on specific parts. They also enabled something called hot

keys . Pressing r on the keyboard will either start or stop a system from rotating
along the y-axis (get it, r for rotate?). Pressing t allows the system to be
translated (get it, t for translate?). This means that you can move it around the
screen (which is especially helpful if you’ve zoomed in by scrolling). Sometimes in
VMD there are also some weird looking half in and out bonds (or times it just looks
like your system is broken in that specific view). That can be fixed by pressing t ,
right-clicking with the mouse, and dragging downward.

There are some other hot keys that you can read about in the VMD User’s Guide ,
but these will at least get you to stop asking yourself why the heck your protein
won’t stop spinning.

Changing Your System's Orientation PDF last generated: October 07, 2021

Analysis Guide User Guide Page 59

http://www.ks.uiuc.edu/Research/vmd/current/ug/

Labels
VMD allows you to label atoms, distances, angles, or dihedrals in several ways.

The Terminal, Display, and Labels GUI in VMD.

Atoms
One way to label atoms is by following Mouse → Label → Atoms in the main
menu and then right-clicking on the atom/residue of interest. This will print some
information to the Terminal that VMD is operating from, including what it was that
was named, which can be helpful, since the default labeling color is neon green.
Another way is to left click on the display window, hit 1 on the keyboard, and
then click on the atom that you want information on using the mouse. Finally,
following Graphics → Labels will pull up all the information printed to the
Terminal in a GUI. These different labeling types are shown in the figure above.

Labels PDF last generated: October 07, 2021

Analysis Guide User Guide Page 60

Distances
Distances between two atoms can be labeled by left-clicking on the display
window, hitting 2 on the keyboard. Your cursor then becomes a cross, which can
be used to select the two specific atoms by left-clicking on one and then the
other. Like with the atom information, the distance will be listed on the screen,
printed to the Terminal, and shown in the labels GUI created through following
Graphics → Labels (once you’ve changed Atoms to Bonds in the upper left

corner).

Angles
Angles between three atoms can be labeled by left-clicking the display window,
hitting 3 on the keyboard. Your cursor then becomes a cross, which can be used
to select the three specific atoms by left-clicking on them in succession. The order
you select them in makes a difference, though, so think through the angle you’re
interested in before making your selection. Like before, the angle will be listed on
the screen, printed to the Terminal, and shown in the labels GUI created through
following Graphics → Labels (once you’ve changed Angles in the upper left
corner).

Dihedrals
Dihedrals between four atoms can be labeled the same was as angles (page 61),
except instead of hitting 3 , you hit 4 on the keyboard and the atoms of interest.
The atom order will also make a difference here, so be careful.

Labels PDF last generated: October 07, 2021

Analysis Guide User Guide Page 61

Graphical Representations
VMD has quite a few options for changing the view of your system. These are
found by following Graphics → Representations in the VMD main menu. For
any loaded system, the default (unless you’ve changed some settings) is to show
everything using the Lines drawing method. Lines is helpful sometimes, but
overwhelmingly, there are some common trends in how people create images for
publication/presentations, and those are typically the representations that people
use when visualizing their data all the time. To start, type protein into the
Selected Atoms box and press enter. Then change the Drawing Method to
New Cartoon and hit enter again. Now you have created your first representation

for the protein. To add more layers, hit the Create Rep button. VMD will
automatically generate a second representation of what you just made, and now
you can edit that, hitting enter after every change.

Other common trends for VMD visualization are to show metal ions using the VDW

drawing method (please… I’m begging you… call them “spheres” and NOT “van
der Waal’s balls”), using the Licorice drawing method for nucleic acids, and
showing any cofactors with the CPK drawing method. However, you should really
use what makes sense to you, until you’re told to change it. The advice I have for
you is to play around with these settings. Two quick other notes: 1) under
Materials , there’s a Transparent option, which while it may not look it

onscreen, will actually look transparent in an image and 2) Coloring Method has
a Color ID option, so that you can make entire portions of your protein one
color. Finally, an example of a complete representation is shown below.

Graphical Representations PDF last generated: October 07, 2021

Analysis Guide User Guide Page 62

A complete graphical representation for a system.

VMD’s Syntax
Ah, yes, you’ve just learned about Selected Atoms . Now’s a good time to let
you know VMD is a grammar-obsessed jerk who wants everything to be stated in
exactly the right way. Here’s a list of things that VMD will accept:

Graphical Representations PDF last generated: October 07, 2021

Analysis Guide User Guide Page 63

• protein : the protein

• nucleic : any nucleic acid residues

• all not water : everything in the structure that isn’t water. Any
keyword, like nucleic or protein, can be used here.

• all not resname MG2 : everything in the structure that doesn’t have the
residue name MG2.

• resname MG2 : anything in the PDB with the residue name of MG2. Any
residue name (cough think of non-standard residues here cough) can be
used with the resname command, provided it’s found in the protein
structure.

• resid 244 : the residue corresponding to the number 244 in the PDB.

• all within 5 of resname MG2 : everything in the structure within 5 Å
residue name MG2.

• resid 1 to 125 : all residue numbers from 1 through 125

To summarize: it’s powerful, but if you mess up, VMD won’t necessarily let you
know that, and you’ll just think you’ve lost a critical part of your structure (like a
zinc in your active site that they entirety of everything you’ve ever cared about in
research). When in doubt, save a PDB and check it using gedit or vi (page 0) for
what you think is missing.

Saving/Loading Graphical Representations
If you’re going to be making a lot of images, or just revisiting the same structure
files over and over and over, you’ll probably want to save visualization state. This
essentially saves the information for the loaded compound, such as frames loaded
in, and the graphical representation information. To do this, either follow File →

Save Visualization State in the main menu, or type:

$ save_state name-of-saved-state.vmd

into the command line where VMD is operating from.

To open visualization states, either follow either follow File → Load

Visualization State in the main menu, or type:

$ vmd -e name-of-saved-state.vmd

Graphical Representations PDF last generated: October 07, 2021

Analysis Guide User Guide Page 64

http://localhost:4012/Analysisguide-pdf/UNIXguide-vi.html

when loading VMD from the command line.

Graphical Representations PDF last generated: October 07, 2021

Analysis Guide User Guide Page 65

Saving Files
VMD is pretty useful for saving structures. For instance, you can save the final
frame of a trajectory (so a loaded in prmtop and nc file combo), and use that
final structure for all of your images. Pretty cool, huh? No? Alright, tough crowd.
Anyway, you can do that by first highlighting the structure you’ll want to save
something from in the main menu, then following File → Save Coordinates .
When saving a PDB from the prmtop/nc combo, then you’re going to want to
change the first frame to be equal to the last frame value (so in the image below,
both should be 4999), because otherwise the PDB will contain a ridiculous number
of coordinates and thus won’t actually be helpful. You can also use VMD’s syntax
(page 63) to specify which things you want saved (usually all not water). Also,
with frame numbers, as you can see, VMD starts a “0” and counts upwards, so
while there were 5000 frames loaded, it’ll register as 0 to 4999.

The Save Trajectory menu.

Saving Files PDF last generated: October 07, 2021

Analysis Guide User Guide Page 66

Generating Images
If you’ve been reading in order, then you know that I keep throwing this
“publication-quality images” phrase around. Well, what do you know, the
“Generating Images” section will actually tell you how to make these images!
Amazing. Once you’ve gotten the the screen to look how you want the image you
wanted created to look, follow File → Render in the main menu. This brings up
the File Render Controls menu (see the image below).

The Render screen for image generation.

The first dropdown, Render the current scene using: , selects the image-
quality type. If you’re just doing something super quick that’s kind of irrelevant,
then it’s fine to save the file with the default Snapshot (VMD OpenGL window) . If
you’re going to want to use the image for a presentation, poster, or publication,
however, then you’ll want to select Tachyon (internal, in-memory

rendering) . For a juxtaposition of these, see the next to figures. (We’ll get to why
the colors are different at the end of this section.)

Generating Images PDF last generated: October 07, 2021

Analysis Guide User Guide Page 67

Image generated with Snapshot (VMD OpenGL window).

Generating Images PDF last generated: October 07, 2021

Analysis Guide User Guide Page 68

Image generated with Tachyon (internal, in-memory rendering).

The second dropdown is where you select the save location and the filename. For
these images, keep the .tga extension; you can convert the .tga using Gimp
or the UNIXconvert (page 0) command later. The final box shouldn’t be
something you have to mess with at all, as it is the default option. Once you’re
ready, hit Start Rendering .

Woohoo! You’ve saved a picture! Enjoy remaking it 73 more times because it
wasn’t good yet. Oh, and a quick note: If you’re coloring specific sections of a
protein (like with resid 1 to 23 and resid 95 to 293), then you will need to
make sure that you don’t also have just protein selected; it’d need to be like
protein not resid 1 to 23 and not resid 95 to 293 . The reason why is

because VMD cannot handle the layering in image creation, and your picture will
look terrible (just revisit the images above).

Generating Images PDF last generated: October 07, 2021

Analysis Guide User Guide Page 69

http://localhost:4012/Analysisguide-pdf/UNIXguide-convert.html
http://localhost:4012/Analysisguide-pdf/UNIXguide-convert.html

Saving a High-Quality Image with Transparency
You can also save higher-quality images in VMD (with transparency!) using
POVRay . It needs to be installed separately.

The ray-tracers work well with the AO-type and diffuse materials. Select POV-Ray

in the render window. The number version (likely 3.6) is the earliest version you
can use. For the render command, you need the +UA option to make it
transparent. The image renders using the width and height of the on-screen
window. Because you want a higher quality image, you can add a 0 after the
height and width. It will take a bit more time (almost a full minute for a 450 residue
protein), but it looks much better than 300 DPI.

When you specify the file command, you may wish to leave off the .pov

extension. That way, when it renders, the final image file isn’t named like
.pov.tga .

• For TGA output: povray +W%w0 +H%h0 -I%s -O%s.tga +X +A +FT +UA

• For PNG output: povray +W%w0 +H%h0 -I%s -O%s.png +X +A +FN

+UA

Generating Images PDF last generated: October 07, 2021

Analysis Guide User Guide Page 70

http://www.povray.org/

Making Movies
Now that we’ve talked about images, it’s also important to discuss making
movies. Yep, you read that right–you can save your protein’s wiggles in a video!
To do this, follow Extensions → Visualization → Movie Maker in the main
menu. This brings up the VMD Movie Generator menu (see the image below).

The VMD Movie Generator menu.

The first thing you should do is choose the working directory for making the
movie. It’s set as a temp folder by default, which isn’t necessarily a bad thing, but
it does mean that your movie will be saved in that temporary directory. So set it to
a place you can find it, or just know how to get to that default temp directory.
Next, title your film! Make it descriptive so future you knows what system it is and
what you’re looking at.

Up in the dropdown menus, the first up is the Renderer . Unlike images, using
the Snapshot (screen capture) option is acceptable for movies. However, if
you chose this option, it is critical that the VMD window isn’t covered by other
windows (or browsers or terminals, etc.) in the process, because otherwise your
video will have those landmarks in it. Under Movie Settings , there are two that

Making Movies PDF last generated: October 07, 2021

Analysis Guide User Guide Page 71

you’ll likely want to use for movies. The first is Rotation about Y axis –this
does exactly like it sounds. The second is Trajectory . This is what will actually
save your wiggling protein as a movie. As for format, the default MPEG-1

(ppmtompeg) should be fine, unless you have a strong reason for needing a
different format.

The other options, Rotation angle , Trajectory step size , and Movie

duration depend on what you’re doing and what you’re making the movie for.
The rotation angle specifies how far anything that rotates should. If you’re using
Rotation about Y axis to show off your protein, then you probably want that

to be 360 ; if you’re making a trajectory movie then you’ll want it to be 0 .
Trajectory step size specifies how many frames to skip when making your

movie. The larger the step size, the more choppy the video will look, but the
shorter it will be. You only can choose to set a trajectory movie based on step size
or duration–not both. Typically, people won’t want to watch anything more than a
25 second video played on a loop.

Once you’ve decided all the settings, hit that Make Movie button, making sure
that nothing is in the way of the VMD OpenGL Display window (where you are
currently looking at the protein), and watch it go.

Success! A video has been made!

Making Movies PDF last generated: October 07, 2021

Analysis Guide User Guide Page 72

NMA Overview
Normal modes describe the vibrations of different molecular compounds.
Analyzing these different modes can be done through the use of VMD and ProDy.

You can think of normal modes through the act of breathing. There are a lot of
different movements involved in the act of breathing. For example, your lungs
expand, your diaphragm moves down, and your mouth opens wide. Each of these
motions have a different contribution to the act of you breathing. The most
dominant, your lungs expanding, would be the primary mode (mode 1)–it’s the
biggest contributor to the act of breathing. The other motions are different modes
(e.g., mode 2 or mode 3). You can break down breathing into hundreds or
thousands of motions, but after those first few major ones, there’s not much else
that’s important (i.e., any movement to your left pinky toe when you breathe
probably isn’t relevant).

NMA Overview PDF last generated: October 07, 2021

Analysis Guide User Guide Page 73

Downloading VMD and ProDy
Visual Molecular Dynamics (VMD) has already been installed on the lab
computers, but you can also install it on a personal computer from here for free.

ProDy is a plugin compatible with VMD. To install ProDy on a computer with pip
installed, use pip install -U ProDy . Otherwise, instructions are available from
here .

To use ProDy, two Python dependencies are required (biopython and numpy). If
you have an Anaconda python installation, these can be installed with conda

install biopython and conda install numpy . Otherwise, installing they can
be installed the same way with pip.

Downloading VMD and ProDy PDF last generated: October 07, 2021

Analysis Guide User Guide Page 74

http://www.ks.uiuc.edu/Research/vmd/
http://prody.csb.pitt.edu/downloads/

Loading in the Protein
For the normal modes analysis, you need to have previously finished the cpptraj
steps to create trajectory file for all the production steps. The topology file can be
opened with vmd from the command line, but because the coordinate file is really
large, it needs to be loaded in from the user interface. When loading in the data for
the prmtop, set stride equal to 10 so that it only loads every 10 frames (see the
image below (page 75)).

$ vmd -prmtop vacuum.prmtop

Setting Stride

Demonstration of where to set Stride to skip frames when loading the
coordinate file.

Once the trajectory files are loaded in, follow the VMD menu through Extensions

→ Analysis → RMSD Trajectory Tool (see below (page 76)).

Loading in the Protein PDF last generated: October 07, 2021

Analysis Guide User Guide Page 75

RMSD Analysis

Location of RMSD Trajectory Tool.

This brings up the menu (shown below (page 77)) with several options. Click align.

Loading in the Protein PDF last generated: October 07, 2021

Analysis Guide User Guide Page 76

RMSD Trajectory Tool

The RMSD Trajectory Tool window, with the cursor over align.

After the structure is aligned, proceed to the Normal Mode Wizard. It can be found
in the same menu as the RMSD Trajectory Tool, shown previously (page 76).

From the NMWiz menu, select ProDy Interface. This pulls up the ProDy window
(page 78). Several things need to be changed in this interface, including setting
the ProDy job to a PCA (Principle Component Analysis) calculation, changing the
number of modes to 100 (it can analyze every mode, but the only important ones
are the first few), changing the trajectory type to DCD, and clicking the aligned
structure option. The aligned structure option is what was performed using the
RMSD Trajectory Tool, and saves time in the normal mode calculation. After
changing each of these, the job is ready to be submitted.

Loading in the Protein PDF last generated: October 07, 2021

Analysis Guide User Guide Page 77

ProDy Interface

The ProDy Interface window. The necessary changes are emphasized with
their corresponding colors: blue-ProDy job, green-number of modes, red-
trajectory type, purple-aligned.

Once submitted, a new NMWiz window appears (see below (page 79)). The mode
that is being visualized appears in the upper left. From this window (and several
successive windows), you can save the information for the normal nodes for
further analysis and comparison. To do this, select Plot Mobility.

Loading in the Protein PDF last generated: October 07, 2021

Analysis Guide User Guide Page 78

NMWiz Window

The next NMWiz window, with the blue box corresponding to how to
change between modes, and the red box corresponding to the Plot
Mobility button.

Plot Mobility brings up a plot (amazing!). The data from this plot need to be saved
in a roundabout way. To start this process, go to File → Save as xmgrace .
Title this file however you want, but recognize this will be done for more than 1
mode. Once saved, the Grace window will appear. In this window, follow Data →

Export → ASCII . Yet another Grace window will appear, allowing you to save the
data as a .dat file (see below (page 80)). To actually save, first title the new file
(under the selection box), and then click on the set in “Write Sets” that you want
to save. Then, click OK. It won’t look like it did anything, so if you’re unsure if you
clicked it, click OK again and it will ask if you want to overwrite the file.

Loading in the Protein PDF last generated: October 07, 2021

Analysis Guide User Guide Page 79

xmgrace Window

The Grace window that allows you to save the normal mode data as a .dat
file. In red is the set of data that should be selected and in blue is the save
location.

Follow this process for the first 3 normal modes (1, 2, and 3).

Loading in the Protein PDF last generated: October 07, 2021

Analysis Guide User Guide Page 80

Plotting Normal Modes with gnuplot
Gnuplot is a freely available plotting utility.

The following (normalmodeplot.gnu) is an example gnuplot script that can be
used to generate graphs of the first three normal modes for a specific system.
This script would be in a directory that contained the directories of the individual
systems (4 plots are being generated with this one script as-written), which are
then accessed individually in the plot command. The individual .dat files are the
ones that were created using NMWiz and ProDy (page 75). The number of
residues should be changed in the set xrange [0:500] line to reflect the
number of residues of the protein, and the set x2tics line should have “DNA”
400 reflect the residue number where DNA actually begins (if there is any;
otherwise delete it or comment it out).

Plotting Normal Modes with gnuplot PDF last generated: October 07, 2021

Analysis Guide User Guide Page 81

http://www.gnuplot.info/

set encoding iso_8859_1
set term postscript eps enhanced color font "Helvetica, 20";

unset ytics
set xlabel "Residue Number"
set ylabel "PCA Square Fluctuations"
set xrange [1:500]
set xtics border nomirror out
set x2tics border nomirror out rotate by 25 ("DNA" 400)
set boxwidth 0.25
set style fill solid

set output "WT_protein_system_modes.eps";
plot "WT-system/WT-system_mode1.dat" u 1:2 w boxes t "Mode 1" l
w 3, \
"WT-system/WT-system_mode2.dat" u 1:2 w boxes t "Mode 2" lw 3,
\
"WT-system/WT-system_mode3.dat" u 1:2 w boxes t "Mode 3" lw 3;

set output "MUT-A-system_modes.eps";
plot "MUT-A-system/MUT-A-system_mode1.dat" u 1:2 w boxes t "Mod
e 1" lw 3, \
"MUT-A-system/MUT-A-system_mode2.dat" u 1:2 w boxes t "Mode 2"
lw 3, \
"MUT-A-system/MUT-A-system_mode3.dat" u 1:2 w boxes t "Mode 3"
lw 3;

set output "MUT-B-system_modes.eps";
plot "MUT-B-system/MUT-B-system_mode1.dat" u 1:2 w boxes t "Mod
e 1" lw 3, \
"MUT-B-system/MUT-B-system_mode2.dat" u 1:2 w boxes t "Mode 2"
lw 3, \
"MUT-B-system/MUT-B-system_mode3.dat" u 1:2 w boxes t "Mode 3"
lw 3;

set output "MUT-C-system_modes.eps";
plot "MUT-C-system/MUT-C-system_mode1.dat" u 1:2 w boxes t "Mod
e 1" lw 3, \
"MUT-C-system/MUT-C-system_mode2.dat" u 1:2 w boxes t "Mode 2"
lw 3, \
"MUT-C-system/MUT-C-system_mode3.dat" u 1:2 w boxes t "Mode 3"
lw 3;

Plotting Normal Modes with gnuplot PDF last generated: October 07, 2021

Analysis Guide User Guide Page 82

Determining Normal Modes with Python
Typically, the first three normal modes are the most important for a system, as
they contribute the greatest to the overall motion of the protein. However, some
cases occur where they aren’t that informative, i.e. there’s so much different
movement occurring that those three are not distinct enough. You can plot the
different contributions using Python to get a clearer picture regarding different
contributions.

The following is eigenplots.py and can be run with python eigenplots.py .
Thanks, Alice!

import numpy as np
import matplotlib.pyplot as plt
import matplotlib as mpl
import statsmodels.api as sm
from matplotlib.mlab import griddata
from tables import *
from matplotlib.colors import LinearSegmentedColormap

data1 = np.genfromtxt("WT-system/WT_protein_system_vacuum_prmto
p_pca.nmd", delimiter=None,skip_header=9)

plt.rcParams.update({'font.size': 22})
plt.rcParams.update({'figure.autolayout': True})

data1eigenrank = data1[:,1]
data1eigenvalue = data1[:,2]
plt.tight_layout()
#x-axis 0 to 10; y-axis 0 to 50
plt.axis([0,10,0,50])
plt.xlabel('Mode Number')
plt.ylabel('Percentage of\nTotal Motion (%)')
plt.plot(data1eigenrank,data1eigenvalue,marker='o',c='black',li
newidth=2.0)
plt.savefig('WT_protein_system_eigenplot.png')
plt.gcf().clear()

First a bunch of things were imported to let Python know it knows how to use
Python. Then, the dataset is found, and several unhelpful lines are skipped. The
auto-plot parameters and font sizes are reset, so the graph isn’t weirdly smushed.
Then two specific things are pulled from the matrix in order to be plotted, and the
plot information is specified.

Determining Normal Modes with Python PDF last generated: October 07, 2021

Analysis Guide User Guide Page 83

Fast NMA (ft. cpptraj and Python)
The NMD file can be prepared for use with ProDy using cpptraj. How cool is that?

First, you need to create a covariance matrix using the matrix command.
Covariance is a fancy way to say that you’re looking for the overall change in A
with respect to B, B with respect to C, and so on. In this case, we’re trying to
reduce down multi-dimensional coordinate data and then compare each of the
residues to each other.

After creating the matrix, use the diagmatrix command to calculate the
eigenvectors of the matrix and generate the NMWiz files.

For normal modes (evecs = eigenvectors)
matrix out WT_protein_system_covar_mat.dat name norm_mode :1-47
6@CA,P,C4',C2 covar
diagmatrix norm_mode out WT_protein_system_evecs.out vecs 100 r
educe \
nmwiz nmwizvecs 100 nmwizfile WT_protein_system_100.nmd nmwizm

ask :1-476@CA,P,C4',C2

The mask used above (@CA,P,C4',C2) is based on what the ProDy interface in
VMD uses (protein and name CA or nucleic and name P C4' C2) by
default.

Python can be used to make the mobility plots that became the normal mode
plots (page 83) that we got to know and love with gnuplot. Future Mark will share
a script for that on his GitHub . Until then, I have included my forked version here.

Fast NMA (ft. cpptraj and Python) PDF last generated: October 07, 2021

Analysis Guide User Guide Page 84

https://github.com/markahix/Basic-Scripts

NMA_plot_mult.py

Fast NMA (ft. cpptraj and Python) PDF last generated: October 07, 2021

Analysis Guide User Guide Page 85

import numpy as np
import prody as prd
import matplotlib.pyplot as plt

Typically 3 modes will be enough
num_of_modes = 4

Create a list of tuple (infile_name, outfile_name, system_na
me)
These are the NMD file, the PNG file, and the tag for the sy
stem to determine
the top X ticks through plot_ticks
in_out_sys_names = [

("WT_protein_system_r1_100.nmd", "WT_protein_system_r1_NMA.pn
g", "WT"),

("WT_protein_system_r2_100.nmd", "WT_protein_system_r2_NMA.pn
g", "WT"),

("WT_protein_system_r3_100.nmd", "WT_protein_system_r3_NMA.pn
g", "WT"),

("MUT_A_system_r1_100.nmd", "MUT_A_system_r1_NMA.png", "MUT
A"),

("MUT_A_system_r2_100.nmd", "MUT_A_system_r2_NMA.png", "MUT
A"),

("MUT_A_system_r3_100.nmd", "MUT_A_system_r3_NMA.png", "MUT
A"),

("MUT_B_system_r1_100.nmd", "MUT_B_system_r1_NMA.png", "MUT
B"),

("MUT_B_system_r2_100.nmd", "MUT_B_system_r2_NMA.png", "MUT
B"),

("MUT_B_system_r3_100.nmd", "MUT_B_system_r3_NMA.png", "MUT
B"),
]

def plot_ticks(sys, NMA_data):
"""Sets top xticks. You NEED the 0 and NMA_data.numAtom

s(), otherwise the
scale will be turned off.
**This is an example, you'll need to modify it for your sys

tem.**
"""
if sys == "MUTA":

labels_top = ["", "MUTA", "GS linker", "", "DNA", ""]
places_top = [0, 141, 334, 346, 431, NMA_data.numAtom

s()]
elif sys == "MUTB":

Fast NMA (ft. cpptraj and Python) PDF last generated: October 07, 2021

Analysis Guide User Guide Page 86

labels_top = ["", "GS linker", "", "MUTB", "DNA", ""]
places_top = [0, 334, 346, 378, 431, NMA_data.numAtom

s()]
elif sys == "WT":

labels_top = ["","GS linker", "", "DNA", ""]
places_top = [0, 334, 346, 431, NMA_data.numAtoms()]

else:
labels_top = []
places_top = []

return labels_top, places_top

def NMA_plots(filename,outfile,sys):
"""Creates a plot of the most important modes for a sys

tem.
Parameters

filename : str

An NMD file.
outfile: str

Name of the output PNG.
sys: str

A name (e.g., WT, MUT A, MUT B, etc.) for the syste
m. Replicates

should have the same name.
"""
NMA_data,Atom_Group = prd.parseNMD(filename)
eigens = NMA_data.getEigvals()

labels_top, places_top = plot_ticks(sys, NMA_data)

scales=[]
temp = open(filename)
lines = temp.readlines()
temp.close()
for line in lines:

if 'mode' in line[:5]:
scales.append(float(line.split()[:3][-1]))

Make an array of the number of atoms for plotting
x_vals = np.arange(0, NMA_data.numAtoms(), 1)

fig = plt.figure(figsize=(10,8),dpi=300)
ax = fig.add_subplot(1,1,1)
for i in range(num_of_modes):

Fast NMA (ft. cpptraj and Python) PDF last generated: October 07, 2021

Analysis Guide User Guide Page 87

dataset = [np.linalg.norm(NMA_data.getEigvec
s()[:,i][n:n+3])*scales[i]*eigens[i] for n in range(0, NMA_dat
a.numEntries(), 3)]

ax.bar(x_vals, dataset, width=1.0, label="Mode "+st
r(i+1))

ax_top = ax.twiny()
ax_top.set_xticks(places_top)
ax_top.set_xticklabels(labels_top, fontdict=None, mino

r=False)

ax.legend()
ax.set_xlabel("Residue Number")
ax.set_ylabel("PCA Square Fluctuations")
ax.set_xlim([0,x_vals.size]) ## Remove white space at e

dge
plt.tight_layout()
fig.savefig(outfile,dpi=300)
plt.close()

for filename,outfile,sys in in_out_sys_names:
NMA_plots(filename,outfile,sys)

Reading the .nmd File with Structure in VMD
Reading the .nmd file can be done on its own with the NMWiz plugin, but that file
doesn’t contain structure information that you probably want for image making.

This can be addressed through the following steps:

1. Load in either a PDB file or both a .prmtop and .rst file into VMD.

2. Follow Extensions → Analysis → Normal Mode Wizard → Load NMD

File to load the NMD file.

3. Open the RMSD Trajectory Tool through Extensions → Analysis →

RMSD Trajectory Tool .

4. In the Tool, match the name you used in cpptraj to create the
command in the top left box (likely name CA P "C4'" C2).

5. In the Trajectory box on the right, deselect all options.

6. Remove the { default_name arrow} option by highlighting and
choosing Erase selected .

7. Choose the Selected bubble under Reference mol .

Fast NMA (ft. cpptraj and Python) PDF last generated: October 07, 2021

Analysis Guide User Guide Page 88

8. Highlight { default_name coordinates} and click RMSD .

9. Once the RMSD has finished, click ALIGN .

You specifically want to highlight { default_name coordinates} so that the
arrows and “coordinates” stay in the same place and only the full structural
coordinates move. Otherwise, the tube tracing and stucture will be in one place
and the arrows will be in another. This transformation will not be saved in a .vmd

visualization state file.

Using the Trajectory Tool

The RMSD Trajectory Tool for VMD. The top left has the box for selections, the
top right has the RMSD and ALIGN buttons. Below them is the Reference mol
section, and below that trajectory options.

VMD's RMSD Trajectory Tool.

Fast NMA (ft. cpptraj and Python) PDF last generated: October 07, 2021

Analysis Guide User Guide Page 89

EDA Overview
Energy decomposition analysis (EDA) is a quantitative means of understanding
chemical bonds. The way that we go about EDA provides information about the
Coulomb and van der Waals energies for different residues of interest.

We go about performing EDA using a Fortran90 program adapted by Dr. Cisneros
. The program uses an input file (described here (page 92)) that includes some
specific information about the system being studied, including the number of
residues in the associated mdcrd file. One thing to note for the Fortran90 program
is that the input files must be in ASCII format. Starting with AMBER16, the default
format for all generated files is NetCDF and not ASCII; unless you explicitly set
ioutfm=0 in your mdin files, you will have them in NetCDF format. To check if

your mdcrd is in ASCII format, use something like head _____.mdcrd . If you see
neat rows of numbers, then it is in ASCII. If it looks like your computer is exploding
in the Terminal, then you’ll need to use cpptraj to create an ASCII formatted
mdcrd. Another (easier) way to do this is to use file _____.mdcrd . If the file is a
NetCDF, then _____.mdcrd: data would be returned; otherwise _____.mdcrd:

ASCII text will be returned. You can use cpptraj to convert to ASCII through
adding

trajout _____.mdcrd crd

to the end of your a cpptraj input (that includes all the trajin lines for files of
interest). It is critically important that any time cpptraj is used to convert to ASCII
format that no strip commands are used. Stripping the system, while saving on
time, will return radically different values for both Coulomb and van der Waals
energies. Using autoimage will have an effect on the significant figures, so it
should also not be used.

Once the Fortran90 program has run (correctly), there are 3 output files generated.
These are fort.804, fort.803, and fort.806. The first one, fort.804 , is a sanity
check that may include the atom typing. It is created at the start of the program
execution. The other two files, fort.803 and fort.806 , are created after the
program has finished. fort.803 includes information about the Coulomb
energies; fort.806 includes information about the van der Waals energies. For
both of these files, the columns are organized from left to right as:

1. Index (row number)

2. Residue A

3. Residue B

EDA Overview PDF last generated: October 07, 2021

Analysis Guide User Guide Page 90

http://chemistry.unt.edu/~CisnerosResearch/index.html

4. Coulomb or van der Waals energy (in kcal mol-1)

5. Standard error

EDA Overview PDF last generated: October 07, 2021

Analysis Guide User Guide Page 91

EDA Input File
EDA uses an input file that consists of the number of protein residues, the number
of files to be read in, the total number of atoms, protein atoms, total residues, and
number of types. The final line should be the names of the mdcrds (in ASCII
format) that the program should use. The file extension on the input file should be
.inp .

All of the associated numbers can be found from looking at a PDB file for the
system. The final line of the protein residues and the final line of the solvated
system from which the first example input was generated is shown here, with the
relevant numbers in brackets.

ATOM [7277] O4 AKG [455] 3.870 -2.076 2.583 1.0
0 0.00
ATOM [59661] H2 WAT [17929] -1.189 1.046 -55.340 1.0
0 0.00

This example is for a protein that the strip command was not used on.

455 !number of protein residues
1 !number of files
59661 !total number of atoms
7277 !number of protein atoms
17929 !number of total residues
2000 !max number of types
solvated_complex_imaged_1-200-full.mdcrd

This example is for a protein that the strip command was used on. Notice that the
protein and the residue totals are equivalent. Using strip will return bad values, so
it shouldn’t be used.

455 !number of protein residues
1 !number of files
7278 !total number of atoms
7278 !number of protein atoms
455 !number of total residues
2000 !max number of types
solvated_complex_imaged_1-200.mdcrd

EDA Input File PDF last generated: October 07, 2021

Analysis Guide User Guide Page 92

This example shows what it looks like when multiple mdcrd files are read in.

473 !number of protein residues
10 !number of files
59663 !total number of atoms
7295 !number of protein atoms
17929 !number of total residues
2000 !max number of types
solvated_complex_md1.mdcrd
solvated_complex_md2.mdcrd
solvated_complex_md3.mdcrd
solvated_complex_md4.mdcrd
solvated_complex_md5.mdcrd
solvated_complex_md6.mdcrd
solvated_complex_md7.mdcrd
solvated_complex_md8.mdcrd
solvated_complex_md9.mdcrd
solvated_complex_md10.mdcrd

EDA Input File PDF last generated: October 07, 2021

Analysis Guide User Guide Page 93

Locally Running EDA
The EDA program can be compiled and run locally at your workstation. To achieve
this with a program edition titled Residue_E_Decomp_07_15.f90 , perform:

$ gfortran Residue_E_Decomp_07_15.f90 -o Residue_E_Decomp_07_1
5.x
$./Residue_E_Decomp_07_15.x

The program will look for an input file (ex: here (page 92)) and whatever prmtop file
should be used with your specified mdcrd. If you use a strip command in your
cpptraj ASCII generation, then you’ll need a stripped prmtop (either made with the
outprefix option of the strip command or generated through the parmed (page

24) program in AmberTools).

Locally Running EDA PDF last generated: October 07, 2021

Analysis Guide User Guide Page 94

EDA PBS Script
The following script can be used to run EDA on a PBS scheduler (page 0). The
script can be amended to work with a different Fortran compiler (here, Intel’s ifort
is used).

#/bin/bash
#PBS -q gac.cpu
#PBS -j oe
#PBS -r n
#PBS -o EDA.error
#PBS -N EDA-run-script

##Load in the Intel compiler
module load intel/17.0

##Access the folder where the files are
cd $PBS_O_WORKDIR

##Compile the EDA program
ifort Residue_E_Decomp_07_15.f90 -o Residue_E_Decomp_07_15.x

##Sleep for 5 seconds, ensuring that the program was compiled
sleep 5

##Run the program; read in the prompt answers [Line 1: Name o
f input; Line 2: Name of prmtop]
./Residue_E_Decomp_07_15.x < ans.txt

##Acquire the process ID for the program execution
proc_PID=$!

##Wait until the program execution is over before ending the sc
ript
wait $proc_PID

echo "All done!"

A file named ans.txt is fed into the Fortran program. Because the program is
being run through the queue, the answers to the prompts must be directly input
into the program. And example of the file is:

EDA PBS Script PDF last generated: October 07, 2021

Analysis Guide User Guide Page 95

http://localhost:4012/Analysisguide-pdf/UNIXguide-PBS.html

EDA-input.inp
solvated_complex.prmtop

If any comments are used in the ans.txt file, the program will not work.

EDA PBS Script PDF last generated: October 07, 2021

Analysis Guide User Guide Page 96

Interactive EDA Submission
Instead of using a script, the EDA program can be run through the PBS scheduler
interactively. First, request a node for interactive submission with:

$ qsub -I -q my_cpu_alloc -N name-of-job-for-queue

After requesting a node, you can essentially follow through the start of the EDA
script.

$ module load intel/17.0
$ cd /home/euid123/path/to/files
$ ifort Residue_E_Decomp_07_15.f90 -o Residue_E_Decomp_07_15.x
$./Residue_E_Decomp_07_15.x

Answer prompt 1 [Name of input file?]
Answer prompt 2 [Name of prmtop?]
Cntrl + Z

$ bg
$ top

The last three steps (Cntrl + Z through top) ensures that any ssh session
used to run the program won’t terminate due to a broken pipe. The job is
temporarily suspended, forced to run in the background, and top , which
refreshes every 5 seconds, is used to keep the connection alive. When the
program is no longer listed on top , then you can exit the node/ssh connection.

Like before (page 95), Intel’s ifort compiler doesn’t need to be used; gcc’s gfortran
can be used instead.

Interactive EDA Submission PDF last generated: October 07, 2021

Analysis Guide User Guide Page 97

EDA Results Analysis with R for
Specific Residues
As mentioned earlier (page 10), R is a programming language that is often used for
data processing and statistics. The following script has been created to process
through replicate EDA data and obtain the averages for a system.

EDA Results Analysis with R for Specific Residues PDF last generated: October 07, 2021

Analysis Guide User Guide Page 98

rmagic-EDA-avg.r

EDA Results Analysis with R for Specific Residues PDF last generated: October 07, 2021

Analysis Guide User Guide Page 99

Run this with "Rscript rmagic-EDA-avg.r"
(Assuming you've already installed R...)

#---#
#--Specify the paths to the Files from EDA--#
#---#

This script has been pre-built for a system with 3 replicate
s
More or less than 3 reps (up to 5) can be achieved through
Commenting or uncommenting

Paths to the fort.803 (Coul) files
Set A (system A)
infile1Ac <- Sys.glob("/absolute/path/to/the/analysis/files/fo
r/WT-System-1/fort.803")
infile2Ac <- Sys.glob("/absolute/path/to/the/analysis/files/fo
r/WT-System-2/fort.803")
infile3Ac <- Sys.glob("/absolute/path/to/the/analysis/files/fo
r/WT-System-3/fort.803")
##infile4Ac <- Sys.glob("/absolute/path/to/the/analysis/files/f
or/WT-System-4/fort.803")
##infile5Ac <- Sys.glob("/absolute/path/to/the/analysis/files/f
or/WT-System-5/fort.803")

Paths to the fort.806 (VdW) files
Set A (system A)
infile1Av <- Sys.glob("/absolute/path/to/the/analysis/files/fo
r/WT-System-1/fort.806")
infile2Av <- Sys.glob("/absolute/path/to/the/analysis/files/fo
r/WT-System-2/fort.806")
infile3Av <- Sys.glob("/absolute/path/to/the/analysis/files/fo
r/WT-System-3/fort.806")
##infile4Av <- Sys.glob("/absolute/path/to/the/analysis/files/f
or/WT-System-4/fort.806")
##infile5Av <- Sys.glob("/absolute/path/to/the/analysis/files/f
or/WT-System-5/fort.806")

#-----------------------------#
#--Define your outfile names--#
#-----------------------------#

A is for infiles labeled A
Each system gets an averaged file
Have one for Coulomb, one for vdW, and one for Coul+vdW (tot

EDA Results Analysis with R for Specific Residues PDF last generated: October 07, 2021

Analysis Guide User Guide Page 100

al)

A_coul <- "/absolute/path/to/the/avgeraging/output/WT_protein_s
ystem_EDA_resX_coul_avg.dat"
A_vdw <- "/absolute/path/to/the/avgeraging/output/WT_protein_sy
stem_EDA_resX_vdw_avg.dat"
A_tot <- "/absolute/path/to/the/avgeraging/output/WT_protein_sy
stem_EDA_resX_tot_avg.dat"

Residue of interest (A matched with B, which matches do you
care about?) (use 4 after decimal)
Ex. If mutant is residue 100, this would be 100
This script will remove the matches directly surrounding RO
I for you
Which is good because by not being just Coul and vdW, they'r
e too dominant
ROI <- 100

How many data sets to add (use 4 after decimal)
sets <- 3.0000
#sets <- 5.0000

#--
--------#
#---------Behind the Curtain: No Need to Modify Past This Lin
e---------#
#--
--------#

Use the data tables package to read in data frames
Remove comment to install locally
#install.packages("data.table")
library(data.table)

Use the tidyverse package to perform string replacement
Remove comment to install locally
#install.packages("tidyverse")
library(tidyverse)

Turn off scientific notation
options(scipen = 999)

#----------------------------#
#--Read in Coul EDA Scripts--#
#----------------------------#

EDA Results Analysis with R for Specific Residues PDF last generated: October 07, 2021

Analysis Guide User Guide Page 101

First line of file is number of frames used for EDA
This is skipped by R's fread by default to avoid
Irregular header information

Reading each file as a data.table.
Bonus - fread is much faster than read.csv
read1Ac <- fread(infile1Ac, header=FALSE)
read2Ac <- fread(infile2Ac, header=FALSE)
read3Ac <- fread(infile3Ac, header=FALSE)
#read4Ac <- fread(infile4Ac, header=FALSE)
#read5Ac <- fread(infile5Ac, header=FALSE)

colnames(read1Ac) <- c("Index", "ResidueA", "ResidueB", "Coulom
b", "StdErr")
colnames(read2Ac) <- c("Index", "ResidueA", "ResidueB", "Coulom
b", "StdErr")
colnames(read3Ac) <- c("Index", "ResidueA", "ResidueB", "Coulom
b", "StdErr")
#colnames(read4Ac) <- c("Index", "ResidueA", "ResidueB", "Coulo
mb", "StdErr")
#colnames(read5Ac) <- c("Index", "ResidueA", "ResidueB", "Coulo
mb", "StdErr")

Combine all the datasets into 1
bound <- rbind(read1Ac, read2Ac, read3Ac)
#bound <- rbind(read1Ac, read2Ac, read3Ac, read4Ac, read5Ac)

Add in a blank row of the match for future plotting needs
extra <- data.frame(0, ROI, ROI, 0, 0)
bound <- rbind(bound, setNames(extra, names(read1Ac)))

#bound$Index <- as.numeric(bound$Index)
bound$Index <- as.numeric(bound$Index)
bound$ResidueA <- as.numeric(bound$ResidueA)
bound$ResidueB <- as.numeric(bound$ResidueB)
bound$Coulomb <- as.numeric(bound$Coulomb)
bound$StdErr <- as.numeric(bound$StdErr)

Collapse repeat lines into themselves (i.e. add numbers toge
ther)
superbound_avg <- aggregate(data=bound, cbind(Coulomb,StdErr)~R
esidueA+ResidueB, FUN=sum)
superbound_sd <- aggregate(data=bound, cbind(Coulomb,StdErr)~Re
sidueA+ResidueB, FUN=sd)

EDA Results Analysis with R for Specific Residues PDF last generated: October 07, 2021

Analysis Guide User Guide Page 102

Get average based on number of sets combined [This if for 3]
superbound_avg$AvgCoulomb <- format(superbound_avg$Coulomb / se
ts, digits=4, format="f")
superbound_avg$AvgCoulombSD <- format(superbound_sd$Coulomb / s
ets, digits=4, format="f")

If you for some reason care about StdErr, then you'd uncomme
nt this
Yes, it's weird that StdErr has a SD, but that's just a sani
ty thing
#superbound_avg$AvgStdErr <- format(superbound_avg$StdErr / set
s, digits=4, format="f")
#superbound_avg$AvgStdErrSD <- format(superbound_sd$StdErr / se
ts, digits=4, format="f")

save_cols_Ac <- superbound_avg[,c("ResidueA", "ResidueB", "AvgC
oulomb", "AvgCoulombSD")]
#save_cols_Ac <- superbound_avg[,c("ResidueA", "ResidueB", "Avg
Coulomb", "AvgCoulombSD", "AvgStdErr", "AvgStdErrSD")]

only_ROI_rows_Ac <- filter(save_cols_Ac, ResidueA == ROI | Resi
dueB == ROI)

Change the NA from standard deviation to 0
only_ROI_rows_Ac[(ROI),4] <- 0

Create a copy of the parsed data to format
clean_rows_Ac <- data.frame(only_ROI_rows_Ac)

Pattern searching converted it to a character string, so bac
k to numeric
clean_rows_Ac$AvgCoulomb <- as.numeric(clean_rows_Ac$AvgCoulom
b)
clean_rows_Ac$AvgCoulombSD <- as.numeric(clean_rows_Ac$AvgCoulo
mbSD)

Limit to 4 sig figs after decimal
clean_rows_Ac$AvgCoulomb <- formatC(clean_rows_Ac$AvgCoulomb, d
igits=4, format="f")
clean_rows_Ac$AvgCoulombSD <- formatC(clean_rows_Ac$AvgCoulombS
D, digits=4, format="f")

Set the two residues surrounding the ROI to zero
This is because energy is overpowering due to other energy t

EDA Results Analysis with R for Specific Residues PDF last generated: October 07, 2021

Analysis Guide User Guide Page 103

erms
So if ROI=100, you remove matches between 99 & 100 as well a
s 100 & 101
if (ROI != 1) {clean_rows_Ac[(ROI-1),3] <- 0
clean_rows_Ac[(ROI-1),4] <- 0
}
clean_rows_Ac[(ROI+1),3] <- 0
clean_rows_Ac[(ROI+1),4] <- 0

#--
----------#
#---------------------------COUL OUTFILE-----------------------
#
#--
----------#

Now write a tab-delimited outfile!
Don't care about the index rownames
#write.table(clean_rows_Ac, file = A_coul, sep="\t", row.name
s=FALSE, quote=FALSE)

Write a whitespace-delimited outfile!
sink(A_coul, type=c("output"))
print(clean_rows_Ac, row.names=FALSE)
sink()

#---------------------------#
#--Read in VDW EDA Scripts--#
#---------------------------#

First line of file is number of frames used for EDA
This is skipped by R's fread by default to avoid
Irregular header information

Reading each file as a data.table.
Bonus - fread is much faster than read.csv
read1Av <- fread(infile1Av, header=FALSE)
read2Av <- fread(infile2Av, header=FALSE)
read3Av <- fread(infile3Av, header=FALSE)
#read4Av <- fread(infile4Av, header=FALSE)
#read5Av <- fread(infile5Av, header=FALSE)

colnames(read1Av) <- c("Index", "ResidueA", "ResidueB", "VdW",
"StdErr")
colnames(read2Av) <- c("Index", "ResidueA", "ResidueB", "VdW",

EDA Results Analysis with R for Specific Residues PDF last generated: October 07, 2021

Analysis Guide User Guide Page 104

"StdErr")
colnames(read3Av) <- c("Index", "ResidueA", "ResidueB", "VdW",
"StdErr")
#colnames(read4Av) <- c("Index", "ResidueA", "ResidueB", "Vd
W", "StdErr")
#colnames(read5Av) <- c("Index", "ResidueA", "ResidueB", "Vd
W", "StdErr")

Combine all the datasets into 1
bound <- rbind(read1Av, read2Av, read3Av)
#bound <- rbind(read1Av, read2Av, read3Av, read4Av, read5Av)

Add in a blank row of the match for future plotting needs
extra <- data.frame(0, ROI, ROI, 0, 0)
bound <- rbind(bound, setNames(extra, names(read1Av)))

#bound$Index <- as.numeric(bound$Index)
bound$Index <- as.numeric(bound$Index)
bound$ResidueA <- as.numeric(bound$ResidueA)
bound$ResidueB <- as.numeric(bound$ResidueB)
bound$VdW <- as.numeric(bound$VdW)
bound$StdErr <- as.numeric(bound$StdErr)

Collapse repeat lines into themselves (i.e. add numbers toge
ther)
superbound_avg <- aggregate(data=bound, cbind(VdW,StdErr)~Resid
ueA+ResidueB, FUN=sum)
superbound_sd <- aggregate(data=bound, cbind(VdW,StdErr)~Residu
eA+ResidueB, FUN=sd)

Get average based on number of sets combined [This if for 3]
superbound_avg$AvgVdW <- format(superbound_avg$VdW / sets, digi
ts=4, format="f")
superbound_avg$AvgVdWSD <- format(superbound_sd$VdW / sets, dig
its=4, format="f")

If you for some reason care about StdErr, then you'd uncomme
nt this
Yes, it's weird that StdErr has a SD, but that's just a sani
ty thing
#superbound_avg$AvgStdErr <- format(superbound_avg$StdErr / set
s, digits=4, format="f")
#superbound_avg$AvgStdErrSD <- format(superbound_sd$StdErr / se
ts, digits=4, format="f")

EDA Results Analysis with R for Specific Residues PDF last generated: October 07, 2021

Analysis Guide User Guide Page 105

save_cols_Av <- superbound_avg[,c("ResidueA", "ResidueB", "AvgV
dW", "AvgVdWSD")]
#save_cols_Av <- superbound_avg[,c("ResidueA", "ResidueB", "Avg
VdW", "AvgVdWSD", "AvgStdErr", "AvgStdErrSD")]

only_ROI_rows_Av <- filter(save_cols_Av, ResidueA == ROI | Resi
dueB == ROI)

Change the NA from standard deviation to 0
only_ROI_rows_Av[(ROI),4] <- 0

Create a copy of the parsed data to format
clean_rows_Av <- data.frame(only_ROI_rows_Av)

Pattern searching converted it to a character string, so bac
k to numeric
clean_rows_Av$AvgVdW <- as.numeric(clean_rows_Av$AvgVdW)
clean_rows_Av$AvgVdWSD <- as.numeric(clean_rows_Av$AvgVdWSD)

Limit to 4 sig figs after decimal
clean_rows_Av$AvgVdW <- formatC(clean_rows_Av$AvgVdW, digit
s=4, format="f")
clean_rows_Av$AvgVdWSD <- formatC(clean_rows_Av$AvgVdWSD, digit
s=4, format="f")

Set the two residues surrounding the ROI to zero
This is because energy is overpowering due to other energy t
erms
So if ROI=100, you remove matches between 99 & 100 as well a
s 100 & 101
if (ROI != 1) {clean_rows_Av[(ROI-1),3] <- 0
clean_rows_Av[(ROI-1),4] <- 0
}
clean_rows_Av[(ROI+1),3] <- 0
clean_rows_Av[(ROI+1),4] <- 0

#--
----------#
#-------------------------VDW OUTFILES-------------------------
#
#--
----------#

Now write a tab-delimited outfile!
Don't care about the index rownames

EDA Results Analysis with R for Specific Residues PDF last generated: October 07, 2021

Analysis Guide User Guide Page 106

#write.table(clean_rows_Av, file = A_vdw, sep="\t", row.names=F
ALSE, quote=FALSE)

Write a whitespace-delimited outfile!
sink(A_vdw, type=c("output"))
print(clean_rows_Av, row.names=FALSE)
sink()

#---------------------------------------#
#--Create the TOTAL (Coul + vdW) files--#
#---------------------------------------#

Combine into one dataset
Use all columns from _Ac and the VdW and VdWSD columns from
_Av
Note: this makes it a matrix
combine_Acv = cbind(clean_rows_Ac, clean_rows_Av[,3:4])

Formatting the rows converted it to a character string, so b
ack to numeric again!
combine_Acv$AvgCoulomb <- as.numeric(combine_Acv$AvgCoulomb)
combine_Acv$AvgCoulombSD <- as.numeric(combine_Acv$AvgCoulombS
D)
combine_Acv$AvgVdW <- as.numeric(combine_Acv$AvgVdW)
combine_Acv$AvgVdWSD <- as.numeric(combine_Acv$AvgVdWSD)

Your data are now ResidueA ResidueB AvgCoul AvgCoulSD AvgVd
W AvgVdWSD
Append a column called AvgIntTot thats the sum of AvgCoul an
d AvgVdW
combine_Acv$AvgIntTot <- (combine_Acv$AvgCoulomb + combine_Ac
v$AvgVdW)

Now append a column that's the avg standard deviation
combine_Acv$AvgStdDev <- (combine_Acv$AvgCoulombSD + combine_Ac
v$AvgVdWSD) / 2

Create a new variable that's just ResidueA ResidueB AvgIntTo
t AvgStdDev
save_cols_tot <- combine_Acv[,c("ResidueA", "ResidueB", "AvgInt
Tot", "AvgStdDev")]

Sanity Check!
Set the two residues surrounding the ROI to zero
This is because energy is overpowering due to other energy t

EDA Results Analysis with R for Specific Residues PDF last generated: October 07, 2021

Analysis Guide User Guide Page 107

erms
So if ROI=100, you remove matches between 99 & 100 as well a
s 100 & 101
if (ROI != 1) {save_cols_tot[(ROI-1),3] <- 0
save_cols_tot[(ROI-1),4] <- 0
}
save_cols_tot[(ROI+1),3] <- 0
save_cols_tot[(ROI+1),4] <- 0

#--
----------#
#--------------------TOTAL INTERACTION OUTFILE
S--------------------#
#--
----------#

Now write a tab-delimited outfile!
Don't care about the index rownames
#write.table(save_cols_tot, file = A_tot, sep="\t", row.names=F
ALSE, quote=FALSE)

Write a whitespace-delimited outfile!
sink(A_tot, type=c("output"))
print(save_cols_tot, row.names=FALSE)
sink()

EDA Results Analysis with R for Specific Residues PDF last generated: October 07, 2021

Analysis Guide User Guide Page 108

EDA Results Analysis with R: Difference
of Averaged Systems
The following script can be used to get the difference between two systems that
have already been averaged with rmagic-EDA-avg.r (page 98).

EDA Results Analysis with R: Difference of Averaged Systems PDF last generated: October 07, 2021

Analysis Guide User Guide Page 109

rmagic-EDA-diffs-sysA-sysB.r

EDA Results Analysis with R: Difference of Averaged Systems PDF last generated: October 07, 2021

Analysis Guide User Guide Page 110

Run this with "Rscript rmagic.r"
(Assuming you've already installed R...)

#--
#
#--Specify the paths to the Files from master-analysis-EDA.sh--
#
#--
#

This script has been pre-built for 2 systems with 3 replicat
es
More or less than 3 reps (up to 5) can be achieved through
Commenting or uncommenting

Paths to the -tot- files
Set A (system 1)
infileACV <- Sys.glob("/absolute/path/to/the/analysis/files/fo
r/WT-System-A/systemA_EDA_tot_avg-clean.txt")

##Set B (system 2)
infileBCV <- Sys.glob("/absolute/path/to/the/analysis/files/fo
r/WT-System-B/systemB_EDA_tot_avg.txt")

#-----------------------------#
#--Define your outfile names--#
#-----------------------------#

A - B
TOTAB <- "WT_sysA-sysB_total_interaction_res123_avg.dat"

This is the residue of interest
X_val <- "123"

#--
--------#
#---------Behind the Curtain: No Need to Modify Past This Lin
e---------#
#--
--------#

Use the data tables package to read in data frames
Remove comment to install locally
#install.packages("data.table")
library(data.table)

EDA Results Analysis with R: Difference of Averaged Systems PDF last generated: October 07, 2021

Analysis Guide User Guide Page 111

Use the abind package to combine data frames
Remove comment to install locally
#install.packages("abind")
library(abind)

Turn off scientific notation
options(scipen = 999)

#-------------------#
#--Begin with COUL--#
#-------------------#

Reading each file as a data.table.
Bonus - fread is much faster than read.csv
combineACV <- fread(infileACV, header=TRUE)
colnames(combineACV) <- c("R1", "R2", "TotAvg", "TotStdD")

combineBCV <- fread(infileBCV, header=TRUE)
colnames(combineBCV) <- c("R1", "R2", "TotAvg", "TotStdD")

Redefine as a data frame
combineACV <- as.data.frame(combineACV)

combineBCV <- as.data.frame(combineBCV)

They're not numbers, so make them numbers
combineACV$TotAvg <- as.numeric(as.character(combineACV$TotAv
g))
combineACV$TotStdD <- as.numeric(as.character(combineACV$TotStd
D))

combineBCV$TotAvg <- as.numeric(as.character(combineBCV$TotAv
g))
combineBCV$TotStdD <- as.numeric(as.character(combineBCV$TotStd
D))

Combine A res numbers, tot average, tot average, tot stdev,
tot stev
combineTotCV <- abind(combineACV[,1:3], combineBCV[,3], combine
ACV[,4], combineBCV[,4], along=2)

Rename the columns
colnames(combineTotCV) <- c("R1", "R2", "ATotalE", "BTotalE",
"AAvgStd", "BAvgStd")

EDA Results Analysis with R: Difference of Averaged Systems PDF last generated: October 07, 2021

Analysis Guide User Guide Page 112

Redefine as a data frame
combineTotCV <- as.data.frame(combineTotCV)

If the R1 column doesn't equal X_val, use R1. Else, use R2.
combineTotCV$Residue <- ifelse((combineTotCV$R1 != X_val), as.n
umeric(as.character(combineTotCV$R1)), as.numeric(as.characte
r(combineTotCV$R2)))

They're not numbers, so make them numbers
combineTotCV$ATotalE <- as.numeric(as.character(combineTotCV$AT
otalE))
combineTotCV$BTotalE <- as.numeric(as.character(combineTotCV$BT
otalE))
combineTotCV$AAvgStd <- as.numeric(as.character(combineTotCV$AA
vgStd))
combineTotCV$BAvgStd <- as.numeric(as.character(combineTotCV$BA
vgStd))

Multiply B * -1
THIS WILL DO A - B!!
combineTotCV$BTotalE <- (combineTotCV$BTotalE*(-1.0000000000))
combineTotCV$DiffE <- rowSums(combineTotCV[, c("ATotalE", "BTot
alE")])

Get the Avg Stdev
combineTotCV$AvgSTDEV <- rowMeans(combineTotCV[,5:6])

Create a new variable with just Residue, DiffE, and AvgSTDEV
save_cols_total_CV <- combineTotCV[,c("Residue", "DiffE", "AvgS
TDEV")]

Limit to 8 sig figs after decimal
save_cols_clean_total_CV <- format(save_cols_total_CV, digit
s=8)

Explicitly remove the two residues matched next to the resid
ue of interest
This is because it's more than interaction energy (stuff lik
e bond E too)
(Note: | is the or operator)
#save_cols_clean_total_CV <- save_cols_clean_total_CV[!(save_co
ls_clean_total_CV$Residue == as.numeric(X_val)+1 | #save_cols_c
lean_total_CV$Residue == as.numeric(X_val)-1),]

EDA Results Analysis with R: Difference of Averaged Systems PDF last generated: October 07, 2021

Analysis Guide User Guide Page 113

#--
-------#
#--------------------------TOT OUTFILE
S-------------------------------#
#--
-------#

Now write a tab-delimited outfile!
Don't care about the index rownames because that's the frame
#write.table(save_cols_clean_total_CV, file = TOTAB, sep="\t",
row.names=FALSE, quote=FALSE)

Write a whitespace-delimited outfile!
sink(TOTAB, type=c("output"))
print(save_cols_clean_total_CV, row.names=FALSE)
sink()

EDA Results Analysis with R: Difference of Averaged Systems PDF last generated: October 07, 2021

Analysis Guide User Guide Page 114

Using gnuplot's Multiplot Feature with
Standard Deviations
You can use the multiplot feature to make stacked graphs. The files generated
with R contain information for standard deviation, so it is possible to add error
bars as well.

Using gnuplot's Multiplot Feature with Standard Deviations PDF last generated: October 07, 2021

Analysis Guide User Guide Page 115

reset
dx=1.
n=2
total_box_width_relative=1.
gap_width_relative=0
d_width=(gap_width_relative+total_box_width_relative)*dx/2.
reset

set encoding iso_8859_1
set term pngcairo enhanced color font "Arial,30" size 1500,105
0;
#set term postscript enhanced color font "Arial,24";

Let's use gray colors, standard for each plot
"Sys A" lc rgb "gray40"
"Sys B" lc rgb "gray80"

STACKED PLOTS

set output "../total_interaction_systemA-systemB_yoff.png";
set tmargin 0
set bmargin 0
set lmargin 1
set rmargin 1
unset xlabel
set ylabel "Energy (kcal/mol)" offset 0,-4

unset arrow 1
unset arrow 2
unset arrow 3
unset label

set multiplot layout 2,1 margins 0.12,0.94,0.15,0.88 spacing
0,0

unset xtics
set yrange[-80:60]
set xrange[0:455]
set ytics ("" -80,-60,-40,-20,0,20,40,60) nomirror

set key autotitle column nobox samplen 1 noenhanced
set style data boxes
set x2tics border nomirror in out ("GS Linker" 334, "" 346,"DN
A" 431, "" 451)

Using gnuplot's Multiplot Feature with Standard Deviations PDF last generated: October 07, 2021

Analysis Guide User Guide Page 116

System A
Column 0 is the row number
Toggle the commenting for the first 3 lines to have standar
d deviations
#plot "/absolute/path/to/the/analysis/files/for/WT-System-A/sys
temA_EDA_tot_avg.txt" u ($0):($3) w points t "System A" lw 4 p
t 0 lc "black", \
#"/absolute/path/to/the/analysis/files/for/WT-System-A/system
A_EDA_tot_avg.txt" u ($0):($3):($3-$4):($3+$4):($3) w candlesti
cks fs solid 0.15 t "Avg. Std. Dev." lc rgb "gray40", \
#"/absolute/path/to/the/analysis/files/for/WT-System-A/system
A_EDA_tot_avg.txt" u ($0):($3) w points notitle ls 1 pt 0 lc "b
lack" lw 4;
plot "/absolute/path/to/the/analysis/files/for/WT-System-A/syst
emA_EDA_tot_avg.txt" u ($0):($3) w boxes t "System A" lc rgb "g
ray40"

unset ylabel
unset x2tics
set x2tics border nomirror in out ("" 334, "" 346,"" 431, "" 45
1) #"" 334, "" 346,
set xlabel "Residue number"
set xtics ("1130" 0, "1180" 50, "1230" 100, "1280" 150, "1330"
200, "1380" 250, "1430" 300, \

"1845" 350, "1895" 400) border nomirror out; #"" 334, "" 3
46, "" 431
set ytics (-80, -60,-40,-20,0,20,40, "" 60) nomirror

#System B
Column 0 is the row number
Toggle the commenting for the first 3 lines to have standar
d deviations
#plot "//absolute/path/to/the/analysis/files/for/WT-System-B/sy
stemB_EDA_tot_avg.txt" u ($0):($3) w points t "System B" lw 4 p
t 0 lc "black", \
#"/absolute/path/to/the/analysis/files/for/WT-System-B/system
B_EDA_tot_avg.txt" u ($0):($3):($3-$4):($3+$4):($3) w candlesti
cks fs solid 0.15 t "Avg. Std. Dev." lc rgb "gray40", \
#"/absolute/path/to/the/analysis/files/for/WT-System-B/system
B_EDA_tot_avg.txt" u ($0):($3) w points notitle ls 1 pt 0 lc "b
lack" lw 4;
plot "/absolute/path/to/the/analysis/files/for/WT-System-B/syst
emB_EDA_tot_avg.txt" u ($0):($3) w boxes t "System B" lc rgb "g
ray40"

Using gnuplot's Multiplot Feature with Standard Deviations PDF last generated: October 07, 2021

Analysis Guide User Guide Page 117

unset multiplot

Using gnuplot's Multiplot Feature with Standard Deviations PDF last generated: October 07, 2021

Analysis Guide User Guide Page 118

Deprecated Python EDA Scripts
These scripts are being left in the guides for historic reasons. R is the much more
clear-cut way to process these data.

 Warning: These scripts were written for an Anaconda installation of
Python3.6. Using Python2.7 will not work.

Historic: EDA Results Analysis with awk & Python for
Specific Residues
An awk command (shown in a bash script here) can be used to separate out the
information for a specific residue of interest.

The following script pulls information for residues 436 and 444 from the generated
Fortran90 output, creating separated files for the Coulomb and van der Waals
energies for the individual residues. The number of lines that each created file has
is then listed in a color in the Terminal where the script was executed. The script
can be run after making it executable with chmod u+x awk.sh . Then, to run the
script, use ./awk.sh .

Deprecated Python EDA Scripts PDF last generated: October 07, 2021

Analysis Guide User Guide Page 119

awk.sh

#!/bin/bash

#Template C modification
awk '{if ($2 == 436 || $3 == 436) print}' fort.803 > coul-436
awk '{if ($2 == 436 || $3 == 436) print}' fort.806 > vdw-436

#Complementary C modification
awk '{if ($2 == 444 || $3 == 444) print}' fort.803 > coul-444
awk '{if ($2 == 444 || $3 == 444) print}' fort.806 > vdw-444

CCOLOR='\033[1;33m' #Color for Coulomb terms is yellow
VCOLOR='\033[1;36m' #Color for VDW terms in blue
NC='\033[0m'

echo -e "coul-436 has ${CCOLOR}$(wc -l < coul-436)${NC} lines f
or NStep"
echo -e " vdw-436 has ${VCOLOR}$(wc -l < vdw-436)${NC} lines fo
r NStep"
echo -e "coul-444 has ${CCOLOR}$(wc -l < coul-444)${NC} lines f
or NStep"
echo -e " vdw-444 has ${VCOLOR}$(wc -l < vdw-444)${NC} lines fo
r NStep"

##Other color choices using ANSI escape codes:
#COLOR='\033[0;31m' #Red
#COLOR='\033[1;32m' #Light green; bright
#COLOR='\033[1;33m' #Yellow, bright
#COLOR='\033[33m' #Yellow, standard
#COLOR='\033[0;34m' #Light blue
#COLOR='\033[1;36m' #Cyan, bright
#COLOR='\033[0;36m' #Cyan, standard

The following Python script, once edited to reflect the number of lines that
awk.sh registered, will find the Coulomb and van der Waals energies for the

individual residues by summing them together. These sums will then be printed to
the Terminal in color. In order for this to run properly on a cluster, you’ll need a
local installation of Conda . Otherwise, to run the script, use python coul-

vdw.py .

Deprecated Python EDA Scripts PDF last generated: October 07, 2021

Analysis Guide User Guide Page 120

https://www.anaconda.com/download/#linux

coul-vdw.py

Deprecated Python EDA Scripts PDF last generated: October 07, 2021

Analysis Guide User Guide Page 121

Use with result files from EDA program and awk-Cres-nan.sh t
o extract out individual residues

import math ## Remind Python that it can do math

Use the numbers from awk-Cres-nan.sh output here
Nsteps_Ac = 473 ## coul-436
Nsteps_Av = 473 ## vdw-436
Nsteps_Bc = 473 ## coul-444
Nsteps_Bv = 473 ## vdw-444

Coulomb for Residue A
ifile_Ac = open("coul-436", "r") ## Open the input file, cou
l-436, for reading

Esum_Ac = 0 ## Set the energy sum as 0
to begin with

for i in range(Nsteps_Ac): ## Loop for values for N ro
ws of data, specified above

dummy_Ac = ifile_Ac.readline() ## Reads in line-by-line
dummy_Ac = dummy_Ac.split() ## Splits the data into col

umns
Ei_Ac = float(dummy_Ac[3]) ## Returns floating point n

umber; uses column 4 [start@0]
Esum_Ac += Ei_Ac ## Appends values for Esum

VDW for Residue A
ifile_Av = open("vdw-436", "r") ## Open the input file, vd
w-436, for reading

Esum_Av = 0 ## Set the energy sum as 0
to begin with

for i in range(Nsteps_Av): ## Loop for values for N ro
ws of data, specified above

dummy_Av = ifile_Av.readline() ## Reads in line-by-line
dummy_Av = dummy_Av.split() ## Splits the data into col

umns
Ei_Av = float(dummy_Av[3]) ## Returns floating point n

umber; uses column 4 [start@0]
Esum_Av += Ei_Av ## Appends values for Esum

Coulomb for Residue B

Deprecated Python EDA Scripts PDF last generated: October 07, 2021

Analysis Guide User Guide Page 122

ifile_Bc = open("coul-444", "r")

Esum_Bc = 0

for i in range(Nsteps_Bc):
dummy_Bc = ifile_Bc.readline()
dummy_Bc = dummy_Bc.split()
Ei_Bc = float(dummy_Bc[3])
Esum_Bc += Ei_Bc

VDW for Residue B
ifile_Bv = open("vdw-444", "r")

Esum_Bv = 0

for i in range(Nsteps_Bv):
dummy_Bv = ifile_Bv.readline()
dummy_Bv = dummy_Bv.split()
Ei_Bv = float(dummy_Bv[3])
Esum_Bv += Ei_Bv

Get fancy with colors
from colorama import Fore
from colorama import Style

Prints the floating point number for all values.
Using colorama, you start print command with 'f' for colorat
ion
print(f"Coulomb for RES 436 \t Esum = {Fore.YELLOW}{Style.BRIGH
T} %f {Style.RESET_ALL} kcal/mol" %Esum_Ac) ## Esum_Ac
print(f"VDW for RES 436 \t Esum = {Fore.CYAN}{Style.BRIGH
T} %f {Style.RESET_ALL} kcal/mol" %Esum_Av) ## Esum_Av
print(f"Coulomb for RES 444 \t Esum = {Fore.YELLOW}{Style.BRIGH
T} %f {Style.RESET_ALL} kcal/mol" %Esum_Bc) ## Esum_Bc
print(f"VDW for RES 444 \t Esum = {Fore.CYAN}{Style.BRIGH
T} %f {Style.RESET_ALL} kcal/mol" %Esum_Bv) ## Esum_Bv

Historic: EDA Results Analysis: Plotting All Residues
A more elaborate bash/Python script combination can be used to total the sums
for every residue and put them into convenient coul-byres.dat and vdw-

byres.dat files.

Deprecated Python EDA Scripts PDF last generated: October 07, 2021

Analysis Guide User Guide Page 123

byres-EDA-generation.sh

#!/bin/bash

#Start loop at 1
f=1

Set up loop; the "-lt number" should be the number of protei
n residues +1
i.e. here there's 455 residues before solvation WAT/K+
while [$f -lt 456]; do

Extract out per residue information from the f90 output
The -v flag allows you to to define a variable in the comman
d
Here it's the previously defined f of the loop iteration
awk -v f=$f '{if ($2 == f || $3 == f) print}' fort.803 > cou
l-$f.tmp
awk -v f=$f '{if ($2 == f || $3 == f) print}' fort.806 > vd
w-$f.tmp

f=$[$f+1]
done

Run the python script
python coul-vdw-byres.py

Remove the temp files created in the awk step
rm *.tmp

Rename the output from python to include the current directo
ry name
mv coul-byres.txt ${PWD##**/}-coul-byres.dat
mv vdw-byres.txt ${PWD##**/}-vdw-byres.dat

Deprecated Python EDA Scripts PDF last generated: October 07, 2021

Analysis Guide User Guide Page 124

coul-vdw-byres.py

Deprecated Python EDA Scripts PDF last generated: October 07, 2021

Analysis Guide User Guide Page 125

Use with result files from EDA program and byres-EDA-generat
ion.sh get plottable byres data

import math ## Remind Python that it can do math

Nres = 455 ## Number of residues for analysis
Nsteps = Nres - 1 ## Number of residues for calculation
name = list(range(1,456)) ## From 1 to (but not including) 456

Coulomb
ofile_c = open("coul-byres.txt", "w+")
for x in name: ## Specifies th
e number of the input file

ifile_c = open("coul-{}.tmp".format(x),"r") ## Annoying synt
ax to get loop with input files

Esum_c = 0 ## Start the count at 0

for i in range(Nsteps): ## Loop for values for N row
s of data

dummy_c = ifile_c.readline() ## Reads in line-by-line
dummy_c = dummy_c.split() ## Splits the data in columns

This statement skips residues directly next to each othe
r (ie 1&2, 2&3)

Because they have crazy values and aren't just the Coul/
VDW

if int(float(dummy_c[1])) == (int(float(dummy_c[2])) - 1):
continue

else:
Ei_c = float(dummy_c[3]) ## Returns the floating poi

nt number; uses column 4 [start@0]
Esum_c += Ei_c ## Appends values for Esum

ifile_c.close() ## Close the opened input fil
e to free up memory

ofile_c.write ('%d \t %f \n' %(x,Esum_c)) ## Write the residu
e's energy
ofile_c.close() ## Close the generated file to free up memory

VDW
ofile_v = open("vdw-byres.txt", "w+")
count = 1
for x in name:

ifile_v = open("vdw-{}.tmp".format(x),"r")
Esum_v = 0

Deprecated Python EDA Scripts PDF last generated: October 07, 2021

Analysis Guide User Guide Page 126

for i in range(Nsteps):
dummy_v = ifile_v.readline()
dummy_v = dummy_v.split()
if int(float(dummy_v[1])) == (int(float(dummy_v[2]))-1):

continue
else:

Ei_v = float(dummy_v[3])
Esum_v += Ei_v

ifile_v.close()
ofile_v.write ('%d \t %f \n' %(x,Esum_v))

ofile_v.close()

Once both scripts exist in the folder with the fort.803 and fort.806 files,
simply perform:

$ chmod u+x byres-EDA-generation.sh
$./byres-EDA-generation.sh

and generated files will be easily plotted using gnuplot (or another plotting utility of
your choice).

Historic: Plotting By Residue Data in gnuplot
Gnuplot is a freely available plotting utility.

The following (EDA_plot.gnu) is an example gnuplot script that can be used to
generate graphs of the by-residue Coulomb and vdW energies of 4 different
systems. This script would be in a directory that contained the directories of the
individual systems, which are then accessed individually in the plot command. The
number of residues should be changed in the set xrange [0:500] line to
reflect the number of residues of the protein.

Deprecated Python EDA Scripts PDF last generated: October 07, 2021

Analysis Guide User Guide Page 127

http://www.gnuplot.info/

set encoding iso_8859_1
set term postscript enhanced color font "Arial,24";

set xlabel "Residue number"
set ylabel "Coulomb Energy (kcal/mol)"
set xrange [0:500]
set key bottom left Left reverse width 2 height 1

set output "coulomb.eps";
plot "system-1/system-1-coul-byres.dat" u 1:2 w boxes t "Syste
m 1" lw 4, \
"system-2/system-2-coul-byres.dat" u 1:2 w boxes t "System 2"
lw 4, \
"system-3/system-3-coul-byres.dat" u 1:2 w boxes t "System 3" l
w 4, \
"system-4/system-4-coul-byres.dat" u 1:2 w boxes t "System 4" l
w 4;

set xlabel "Residue number"
set ylabel "vdW Energy (kcal/mol)"
set key top left Left reverse width 2 height 1

set output "vdw.eps";
plot "system-1/system-1-vdw-byres.dat" u 1:2 w boxes t "Syste
m 1" lw 4, \
"system-2/system-2-vdw-byres.dat" u 1:2 w boxes t "System 2" l
w 4, \
"system-3/system-3-vdw-byres.dat" u 1:2 w boxes t "System 3" l
w 4, \
"system-4/system-4-vdw-byres.dat" u 1:2 w boxes t "System 4" l
w 4;
\end{lstlisting}

To run the gnuplot script and generate the plots, use:
\begin{lstlisting}[style=P1]
$ gnuplot EDA_plot.gnu

Deprecated Python EDA Scripts PDF last generated: October 07, 2021

Analysis Guide User Guide Page 128

Historic: EDA Results Analysis: Plotting the Interactions
of a Single Residue
An bash script consisting of a series of awk commands can be used to extract out
the matches for a single residue of interest and prepare them for plotting with
Gnuplot . This script will go through and set the values for the two adjacent
residues to zero, as their interactions are affected by stuff like dihedral angles.

Deprecated Python EDA Scripts PDF last generated: October 07, 2021

Analysis Guide User Guide Page 129

http://www.gnuplot.info/

bashbyres.sh

Deprecated Python EDA Scripts PDF last generated: October 07, 2021

Analysis Guide User Guide Page 130

#!/bin/bash

Prints just the interactions of 1&f, 2&f....
Set f as the residue of interest, and this should do the res
t :D
f=436
g=$[f+1]
e=$[f-1]

First pass at Coulomb interaction
awk -v f=$f '{if ($2 == f) printf "%8s %5s %22s %22s\n", $1,
$3, $4, $5}' fort.803 > coul-$f-byres.tmp
awk -v f=$f '{if ($3 == f) printf "%8s %5s %22s %22s\n", $1,
$2, $4, $5}' fort.803 >> coul-$f-byres.tmp

First pass at vdW interaction
awk -v f=$f '{if ($2 == f) printf "%8s %5s %22s %22s\n", $1,
$3, $4, $5}' fort.806 > vdw-$f-byres.tmp
awk -v f=$f '{if ($3 == f) printf "%8s %5s %22s %22s\n", $1,
$2, $4, $5}' fort.806 >> vdw-$f-byres.tmp

Coulomb interaction

Setting the adjacent residues to zero because they aren't ju
st C/vdW
Adjust the column with value for both adjacents
awk -v var1=$g -v f=$f '$2==var1{$3="0"} {printf "%8s %5s %22s
%22s\n", $1, $2, $3, $4}' coul-$f-byres.tmp > coul-$f-byres.tmp
2

mv coul-$f-byres.tmp2 coul-$f-byres.tmp

awk -v var2=$e -v f=$f '$2==var2{$3="0"} {printf "%8s %5s %22s
%22s\n", $1, $2, $3, $4}' coul-$f-byres.tmp > coul-$f-byres.tmp
2

mv coul-$f-byres.tmp2 coul-$f-byres.tmp

Adjust the column with standard energy for both adjacents

awk -v var1=$g -v f=$f '$2==var1{$4="0"} {printf "%8s %5s %22s
%22s\n", $1, $2, $3, $4}' coul-$f-byres.tmp > coul-$f-byres.tmp
2

Deprecated Python EDA Scripts PDF last generated: October 07, 2021

Analysis Guide User Guide Page 131

mv coul-$f-byres.tmp2 coul-$f-byres.tmp

awk -v var2=$e -v f=$f '$2==var2{$4="0"} {printf "%8s %5s %22s
%22s\n", $1, $2, $3, $4}' coul-$f-byres.tmp > coul-$f-byres.tmp
2

mv coul-$f-byres.tmp2 coul-$f-byres.tmp && mv coul-$f-byres.tm
p coul-$f-byres

Sort by the value numerically so gnuplot doesn't get interes
ting...
sort -k2,4n coul-$f-byres > coul-$f-byres.tmp
mv coul-$f-byres.tmp ${PWD##**/}-coul-$f-res.dat

vdW interaction

Setting the adjacent residues to zero because they aren't ju
st C/vdW
awk -v var1=$g -v f=$f '$2==var1{$3="0"} {printf "%8s %5s %22s
%22s\n", $1, $2, $3, $4}' vdw-$f-byres.tmp > vdw-$f-byres.tmp2

mv vdw-$f-byres.tmp2 vdw-$f-byres.tmp

awk -v var2=$e -v f=$f '$2==var2{$3="0"} {printf "%8s %5s %22s
%22s\n", $1, $2, $3, $4}' vdw-$f-byres.tmp > vdw-$f-byres.tmp2

mv vdw-$f-byres.tmp2 vdw-$f-byres.tmp

awk -v var1=$g -v f=$f '$2==var1{$4="0"} {printf "%8s %5s %22s
%22s\n", $1, $2, $3, $4}' vdw-$f-byres.tmp > vdw-$f-byres.tmp2

mv vdw-$f-byres.tmp2 vdw-$f-byres.tmp

awk -v var2=$e -v f=$f '$2==var2{$4="0"} {printf "%8s %5s %22s
%22s\n", $1, $2, $3, $4}' vdw-$f-byres.tmp > vdw-$f-byres.tmp2

mv vdw-$f-byres.tmp2 vdw-$f-byres.tmp && mv vdw-$f-byres.tmp vd
w-$f-byres

sort -k2,4n vdw-$f-byres > vdw-$f-byres.tmp
mv vdw-$f-byres.tmp ${PWD##**/}-vdw-$f-res.dat

Once the script exist in the folder with the fort.803 and fort.806 files, simply
perform:

Deprecated Python EDA Scripts PDF last generated: October 07, 2021

Analysis Guide User Guide Page 132

$ chmod u+x bashbyres.sh
$./bashbyres.sh

and generated files will be easily plotted using gnuplot (or another plotting utility of
your choice).

Historic: Plotting A Single Residue’s Data in gnuplot

Gnuplot is a freely available plotting utility.

The following (EDA_plot.gnu) is an example gnuplot script that can be used to
generate graphs of the by-residue Coulomb and vdW energies for a single residue
in the system. This script would be in a directory that contained the directories of
the individual systems, which are then accessed individually in the plot command.
The number of residues should be changed in the set xrange [0:500] line to
reflect the number of residues of the protein.

set encoding iso_8859_1
set term postscript enhanced color font "Arial,24";

set xlabel "Residue number"
set ylabel "Coulomb Energy (kcal/mol)"
set xrange [0:500]
set key bottom left Left reverse width 2 height 1

#For points use "w points" instead of "w boxes" (boxplots)
#For lines use "w lines"

set title "Coulomb Interactions for Residue X"
set output "coulomb-436-system1.eps";
plot "system1/system1-coul-436-res.dat" u 2:($3) w boxes t "Sys
tem1" lw 4;

set xlabel "Residue number"
set ylabel "vdW Energy (kcal/mol)"
set key top left Left reverse width 2 height 1

set title "van der Waals Interactions for Residue X"
set output "vdw-436-system1.eps";
plot "system-1/system-1-vdw-436-res.dat" u 2:($3) w boxes t "Sy
stem 1" lw 4;

To run the gnuplot script and generate the plots, use:

Deprecated Python EDA Scripts PDF last generated: October 07, 2021

Analysis Guide User Guide Page 133

http://www.gnuplot.info/

$ gnuplot EDA_plot.gnu

Historic: Plotting a Difference Between 2 Systems at a Single Residue in gnuplot

The following (EDA_plot_subtraction.gnu) is an example gnuplot script that
can be used to generate graphs of the by-residue Coulomb and vdW energies for
the difference between two systems at a single residue. The example residue here
is 436 .

Before this script is run, you’ll need to use the paste command to combine data
together into columns. The data that should be combined comes from
bashbyres.sh (see above (page 129)).

For the Coulomb data, use something like:

$ paste WT/resid436/resid436-coul-436-res.dat MUT-A/resid436/re
sid436-coul-436-res.dat MUT-B/resid436/resid436-coul-436-res.da
t MUT-C/resid436/resid436-coul-436-res.dat > combodata-coul-WT-
res436.dat

For the vdW data, use something like:

$ paste WT/resid436/resid436-vdw-436-res.dat MUT-A/resid436/res
id436-vdw-436-res.dat MUT-B/resid436/resid436-vdw-436-res.dat M
UT-C/resid436/resid436-vdw-436-res.dat > combodata-vdw-WT-res43
6.dat

Deprecated Python EDA Scripts PDF last generated: October 07, 2021

Analysis Guide User Guide Page 134

#paste WT/resid436/resid436-coul-436-res.dat MUT-A/resid436/res
id436-coul-436-res.dat MUT-B/resid436/resid436-coul-436-res.da
t MUT-C/resid436/resid436-coul-436-res.dat > combodata-coul-WT-
res436.dat

#paste WT/resid436/resid436-vdw-436-res.dat MUT-A/resid436/resi
d436-vdw-436-res.dat MUT-B/resid436/resid436-vdw-436-res.dat MU
T-C/resid436/resid436-vdw-436-res.dat > combodata-vdw-WT-res43
6.dat

set encoding iso_8859_1
set term postscript enhanced color font "Arial,24";

set xlabel "Residue number"
set ylabel "Coulomb Energy (kcal/mol)"
set xrange [0:455]

set key bottom left Left reverse width 2 height 1

WT - MUT A

set output "coulomb-WT-MUTA-res436.eps";
plot "combodata-coul-WT-res436.dat" u 2:($3-$7) w boxes t "WT
- MUT A" lw 4;

set xlabel "Residue number"
set ylabel "vdW Energy (kcal/mol)"
set key top left Left reverse width 2 height 1

set output "vdw-WT-MUTA-res436.eps";
plot "combodata-vdw-WT-res436.dat" u 2:($3-$7) w boxes t "WT
- MUT A" lw 4;

WT - MUT B
set xlabel "Residue number"
set ylabel "Coulomb Energy (kcal/mol)"

set output "coulomb-WT-MUTB-res436.eps";
plot "combodata-coul-WT-res436.dat" u 2:($3-$11) w boxes t "W
T - MUT B" lw 4;

set xlabel "Residue number"
set ylabel "vdW Energy (kcal/mol)"
set key top left Left reverse width 2 height 1

Deprecated Python EDA Scripts PDF last generated: October 07, 2021

Analysis Guide User Guide Page 135

set output "vdw-WT-MUTB-res436.eps";
plot "combodata-vdw-WT-res436.dat" u 2:($3-$11) w boxes t "WT
- MUT B" lw 4;

WT - MUT C
set xlabel "Residue number"
set ylabel "Coulomb Energy (kcal/mol)"

set output "coulomb-WT-MUTC-res436.eps";
plot "combodata-coul-WT-res436.dat" u 2:($3-$15) w boxes t "W
T - MUT C" lw 4;

set xlabel "Residue number"
set ylabel "vdW Energy (kcal/mol)"
set key top left Left reverse width 2 height 1

set output "vdw-WT-MUTC-res436.eps";
plot "combodata-vdw-WT-res436.dat" u 2:($3-$15) w boxes t "WT
- MUT C" lw 4;

Historic: Plotting Side-by-Side Datasets in gnuplot
You may want to plot the energies of two systems side-by-side. This can get really
messy, since your number of residues is then doubled. It takes a math-based
work around to force gnuplot to do this, so an example script has been included
here.

Deprecated Python EDA Scripts PDF last generated: October 07, 2021

Analysis Guide User Guide Page 136

reset
dx=1.
n=2
total_box_width_relative=1.
gap_width_relative=0
d_width=(gap_width_relative+total_box_width_relative)*dx/2.
reset

set encoding iso_8859_1
set term pngcairo enhanced color font "Arial,30" size 1500,105
0;

set output "coulomb_1-2.png";

set xlabel "Residue number"
set ylabel "Coulomb Energy (kcal/mol)"
set xrange [0:455]

set boxwidth total_box_width_relative/n relative
set style fill solid 0.8 noborder

set xtics ("1130" 0, "1180" 50, "1230" 100, "1280" 150, "1330"
200, "1380" 250, "1430" 300, \

"1845" 350, "1895" 400) border nomirror out; #"" 334, "" 3
46, "" 431
set x2tics border nomirror out rotate by 15 ("DNA" 431, "" 45
1) #

set arrow 1 from first 334,-39 to first 346,-39 lw 2 nohead
set arrow 2 from first 334,-40 to first 334,-38 lw 1 nohead
set arrow 3 from first 346,-40 to first 346,-38 lw 1 nohead
set label "Linker" at 310,-44 font ",20"

set key top right Right width 2 height 1 font ",20"

#System One
#System Two
plot "system-one-avg_EDA_coul-clean-nocolon.txt" u ($1):2 w box
es t "System One" lc rgb "#0000FA", \
"system-two-avg_EDA_coul-clean-nocolon.txt" u ($1+d_width):2 w
boxes t "System Two" lc rgb "#FA7D00";

Deprecated Python EDA Scripts PDF last generated: October 07, 2021

Analysis Guide User Guide Page 137

Historic: Plotting Side-by-Side Datasets in matplotlib
Sometimes people don’t like the side-by-side variant made using gnuplot. You
then spend several hours trying to make them have thicker lines or what have you
by using a different plotting program. Now there’s a script for a barchart with two
datasets generated using matplotlib .

Deprecated Python EDA Scripts PDF last generated: October 07, 2021

Analysis Guide User Guide Page 138

https://matplotlib.org/

import numpy as np
import matplotlib.pyplot as plt
import matplotlib as mpl
import statsmodels.api as sm
import pandas as pd
from tables import *

x1, y1 = np.loadtxt("../system-one-avg_EDA_total.txt",unpack=Tr
ue,delimiter='\t')
x2, y2 = np.loadtxt("../system-two-avg_EDA_total.txt",unpack=Tr
ue,delimiter='\t')

plt.rcParams.update({'font.size': 24})
plt.rcParams.update({'figure.autolayout': True})

labelsx2 = [1130, 1180, 1230, 1280, 1330, 1380, 1430, 'Linke
r', '', 1895, ' DNA']
placesx2 = [0, 50, 100, 150, 200, 250, 300, 333, 347, 400, 430]

n_residues = 455
index = np.arange(n_residues)
bar_width = 0.5

fig = plt.gcf()
#fig.set_size_inches(11,8.5)
fig.set_size_inches(22,17)

#111 = 1 row x 1 column x 1 index
ax = plt.subplot(111)
ax.axes.get_xaxis()
ax.set_xticks(index + bar_width / 2)
ax.set_xticks(placesx2)
ax.set_xticklabels(labelsx2, fontdict=None, minor=False)
ax.set_xlim(0,456)
ax.tick_params(axis='both', which='major', pad=10, length=10)
systone = ax.bar(index, y1, bar_width, color='#0000FA',align='c
enter',label='system one')
systtwo = ax.bar(index + bar_width, y2, bar_width, color='#FA7D
00',align='center',label='system two')
plt.ylabel('Energy (kcal/mol)')
plt.xlabel('Residue Number')
plt.legend(handles=[systone,systtwo])
plt.savefig('system_total_barchart.png')
plt.close('system_total_barchart.png')

Deprecated Python EDA Scripts PDF last generated: October 07, 2021

Analysis Guide User Guide Page 139

 Note: You’ll want to change nresidues and the labelx2 and placesx2

categories to reflect your system. The labels specified for systone and
systtwo (which are dummy variables, you can make them whatever you
want, really) are what appear in the graph legend. The two specified colors,
#0000FA and #FA7D00, are blue and orange, respectively.

Historic: Plotting Multiple Datasets using gnuplot’s
Multiplot Feature
You can use the multiplot feature to make stacked graphs.

Deprecated Python EDA Scripts PDF last generated: October 07, 2021

Analysis Guide User Guide Page 140

set encoding iso_8859_1
#set term postscript enhanced color font "Arial,24";
set term pngcairo enhanced color font "Arial,30" size 1500,105
0;

STACKED PLOTS

set output "coulomb_stacked_yoffset.png";
set tmargin 0
set bmargin 0
set lmargin 1
set rmargin 1
unset xlabel
set ylabel "Coulomb Energy (kcal/mol)" offset 0,-4

unset arrow 1
unset arrow 2
unset arrow 3
unset label

#Ask for 3, use 2
#set multiplot layout 3,1 margins 0.05,0.95,.1,.99 spacing 0,0
set multiplot layout 2,1 margins 0.12,0.94,0.15,0.88 spacing
0,0
#set multiplot layout 2,1 margins 0.12,0.88,0.15,0.85 spacing
0,0

unset xtics
set yrange[-80:60]
set ytics ("" -80,-60,-40,-20,0,20,40,60) nomirror

set key autotitle column nobox samplen 1 noenhanced
set style data boxes
set x2tics border nomirror in out ("GS Linker" 334, "" 346,"DN
A" 431, "" 451)

#System One
plot "system-one-avg_EDA_coul-clean-nocolon.txt" u ($1):2 w box
es t "System One" lc "medium-blue"

unset ylabel
unset x2tics
set x2tics border nomirror in out ("" 334, "" 346,"" 431, "" 45
1) #"" 334, "" 346,
set xlabel "Residue number"

Deprecated Python EDA Scripts PDF last generated: October 07, 2021

Analysis Guide User Guide Page 141

set xtics ("1130" 0, "1180" 50, "1230" 100, "1280" 150, "1330"
200, "1380" 250, "1430" 300, \

"1845" 350, "1895" 400) border nomirror out;
set ytics (-80, -60,-40,-20,0,20,40, "" 60) nomirror

#System Two
plot "system-two-avg_EDA_coul-clean-nocolon.txt" u ($1):($2) w
boxes t "System Two" lc "dark-orange"

unset multiplot

Deprecated Python EDA Scripts PDF last generated: October 07, 2021

Analysis Guide User Guide Page 142

Mapping Data to Structures
UCSF Chimera is a free molecular modeling program (available for Unix, MacOS
X, and Windows) with a lot of tools and integrated resources for biological
systems. Chimera has already been installed on the lab computers, but you can
install it on your personal computer as well.

Unlike VMD (page 56), Chimera does not require flags to load structures from the
command line. That said, of all the file formats AMBER uses (i.e. PDB, mdcrd,
prmtop, inpcrd, rst, etc.) Chimera can only open a PDB file, so it is crucial to use
VMD to save a PDB of the last frame of a simulation for the purpose of generating
images.

There are two likely types of difference graphs that you’ll want to make images for
based on residue, and those are matrix correlations (page 148) and EDA plots by
residue (page 0). The first step for both of these is to create a .txt file with certain
information for defining an attribute in Chimera. To do this, the first 3-5 lines of
the data file set up the type of plotting that will be created, following an identifier:
value fashion.

1. It is good housekeeping to start this file with a comment describing what
the data are. This might just be the system names that the difference was
drawn from.

• Ex: #KINASE-WT--MUT-A

2. This line is the attribute name that Chimera will use to reference the data.
It cannot begin with a number, underscore, or capital letter. That said, it
can contain underscores and alphanumeric characters, as long as no
spaces are used.

• Ex: attribute: coul-EDA-WT--MUT-A

3. This line specifies the match mode. By default, it is set to any , but other
options include non-zero and 1-to-1 .

• Ex: match mode: 1-to-1

4. This line specifies the recipient of the matching as atoms (default),
residues , or molecules .

5. Finally, if your data has values set as none , then you can choose
whether to treat those as they Python value None, as a string, or delete
them. You shouldn’t need this, but if you ever find yourself in that
situation, just know it exists.

• Ex: recipient: residues

Mapping Data to Structures PDF last generated: October 07, 2021

Analysis Guide User Guide Page 143

https://www.cgl.ucsf.edu/chimera/

The remaining lines are formatted as [Tab] :atomnumber [Tab] attribute-

value . So your data would appear left-aligned like:

:1 1.325
:2 -0.313
:3 -2.109

A sample bash script for making these files is chimeraprint.sh (page 151).

There’s more specific information about generating these attribute lists based on
matrix correlation data (page 148) and EDA data (page 150).

To actually create the graphs, open the PDB saved from the final frame in
Chimera. Then, follow Tools → Structure Analysis → Define Attribute in
Chimera’s main menu. This will open a list of files and folders. Select the data file
(that has the attribute information just described) for what you’re trying to plot,
keeping Open/Render/Select by Attribute checked. If you’re making several
images at a time, you may also want to check the Keep dialog up after Open

box.

Once the attribute has been loaded in, a box with setting information appears (Fig.
\ref{fig:redbluegraphs}).

Mapping Data to Structures PDF last generated: October 07, 2021

Analysis Guide User Guide Page 144

The Render/Select by Attribute Chimera menu.

Mapping Data to Structures PDF last generated: October 07, 2021

Analysis Guide User Guide Page 145

The steps for making images include:

1. Clicking on Reverse Threshold Colors , which will make any negative
values red and positive values blue.

2. Selecting the red bar (click in the histogram area) and manually setting
the value to

• -0.5 for matrix correlations

• -1 or -2 for EDA.

by putting it in the Value box and hitting the enter key.

3. Selecting the blue bar (click in the histogram area) and manually setting
the value to

• 0.5 for matrix correlations

• 1 or 2 for EDA, being consistent with the red bar.

by putting it in the Value box and hitting the enter key.

4. Selecting the white bar (click in the histogram area) and manually set the
color to a nice yellow color, with some sort of opacity. For me, that color
is near #ffffffff9792 (Chimera may change it on you, it’s okay, just
keep it consistent) with an A value (which is the opacity) of 0.591 .

5. Hit Apply

6. Select any residues that you wanted to display by using Chimera’s
command line Favorites → Command Line and typing something like

select :200

where 200 would be the residue number. Then, follow Actions →

Atoms/Bonds → Show to show the residue. To deselect the residue (i.e.
make it not have a green outline), either do deselect :200 in Chimera’s
command line or hit the CTRL key and click in an area of white space.

7. Orient the protein in the manner that you would like it to be
photographed.

8. Go to File → Save Image in the menu bar. The settings for this should
be a PNG format with 4x4 supersample and transparent

background . Like in VMD, if you have multiple structures loaded in,
specifically highlight the one you’re interested in.

9. Once saved, do a happy dance! You created yet another image!
Incredible!

Mapping Data to Structures PDF last generated: October 07, 2021

Analysis Guide User Guide Page 146

If you need to create a key for the coloration that you just did, see the section on
Color Keys (page 152).

Mapping Data to Structures PDF last generated: October 07, 2021

Analysis Guide User Guide Page 147

Matrix Correlation Information
Once the cpptraj matrix correlation data has been processed with the matrix
correlation Python script (page 38), a list of values corresponding to each line in
the protein is generated. That file is literally just lines of numbers, and is not ready
for use in Chimera attribute mapping without some finagling. Behold: matcor-

chimera-numbers.sh . Instead of individually pasting numbers and adding
attribute lines multiple times over for every system you wish to plot, you can
change a few lines in the script and generate the numeric lists a little easier.

Matrix Correlation Information PDF last generated: October 07, 2021

Analysis Guide User Guide Page 148

matcor-chimera-numbers.sh

#!/bin/bash

Define variables
f will name your files, RESA is the first residue name, RES
B is the
second residue name, and INFILE is the file created when mak
ing the
correlation plots when using the Python script
f="SYSTEM"
RESA="WT"
RESB="MUTA"
INFILE='/path/to/file/created/by/matr_corr.py'

Find number of lines in generated matrix value (i.e. number
of residues)
And paste those numbers and data together into one file
a=$(wc $INFILE)
LC=$(echo $a|cut -d' ' -f1)
seq 1 $LC > ${f}-numbers.txt
paste ${f}-numbers.txt $INFILE > ${f}-pastenumbers.txt

Set up information for Chimera attribues
Note: attribute cannot start with a capital letter
echo "#SYSTEM${RESA}SYSTEM${RESB}" > ${f}_mc_chimera.txt
echo "attribute: system${RESA}${RESB}mc" >> ${f}_mc_chimera.txt
echo "match mode: 1-to-1" >> ${f}_mc_chimera.txt
echo "recipient: residues" >> ${f}_mc_chimera.txt

This will print the formatted residue number and value
awk '{printf "\t:%-3s\t%-5s\n", $1, $2}' ${f}-pastenumbers.txt
>> ${f}_mc_chimera.txt

Remove the lists of numbers generated with paste
rm ${f}-numbers.txt
rm ${f}-pastenumbers.txt

Matrix Correlation Information PDF last generated: October 07, 2021

Analysis Guide User Guide Page 149

EDA Plots by Residue
In an effort to quickly generate the EDA plots based on data that has already been
used in previous steps, chimeraprint.sh was written. This script generates the
files needed for difference images for by-residue data that has been processed
usingbashbyres.sh (page 0) and using the associated paste (page 0) command
to create a combined data file.

EDA Plots by Residue PDF last generated: October 07, 2021

Analysis Guide User Guide Page 150

chimeraprint.sh

#!/bin/bash

Define variables
f will name your files, RESA is the first residue name, RES
B is the second residue name
g and h are dependent on the columns that the energy was fou
nd in the combined data used
after doing "paste" on bashbyres.sh data files
f="SYSTEM-WT--MUT-A"
g=3 #Column with WT energy
h=7 #Column with MUT A energy
RESA="WT"
RESB="MUT-A"

Coul
Set up the information for Chimera
Note: attribute cannot start with a capital letter
echo "#SYSTEM${RESA}SYSTEM${RESB}" > ${f}_EDA_coul_chimera.txt
echo "attribute: system${RESA}${RESB}coul" >> ${f}_EDA_coul_chi
mera.txt
echo "match mode: 1-to-1" >> ${f}_EDA_coul_chimera.txt
echo "recipient: residues" >> ${f}_EDA_coul_chimera.txt

This will print the residue number ($2) and the difference i
n energy for $g and $h (specified above)
awk -v g=$g -v h=$h '{printf "\t:%-3s\t%-22s\n", $2, ($g -
$h)}' combodata-coul-WT-res436.dat >> ${f}_EDA_coul_chimera.txt

VDW
echo "#SYSTEM${RESA}SYSTEM${RESB}" > ${f}_EDA_vdw_chimera.txt
echo "attribute: system${RESA}${RESB}vdw" >> ${f}_EDA_vdw_chime
ra.txt
echo "match mode: 1-to-1" >> ${f}_EDA_vdw_chimera.txt
echo "recipient: residues" >> ${f}_EDA_vdw_chimera.txt

awk -v g=$g -v h=$h '{printf "\t:%-3s\t%-22s\n", $2, ($g -
$h)}' combodata-vdw-WT-res436.dat >> ${f}_EDA_vdw_chimera.txt

EDA Plots by Residue PDF last generated: October 07, 2021

Analysis Guide User Guide Page 151

Color Keys
Chimera allows users to develop a color key that matches the scale used in
attribute shading. To add a color key to your image (or just make a color key for a
previously generated image), follow either Tools → Depiction → Color Key or
Tools → Utilities → Color Key . Both are in newer editions of Chimera, but

older editions only have the latter. This path will bring up the Color Key menu (see
the image below).

Color Keys PDF last generated: October 07, 2021

Analysis Guide User Guide Page 152

Color Keys PDF last generated: October 07, 2021

Analysis Guide User Guide Page 153

Chimera's Color Key menu, with options for generating a color key, and an
example shown from the options given.

The number of colors shown in the scale can be changed in the Number of

colors/labels box. Clicking on an individual color will bring up the colors menu.
The colors depicted in the figure have the Tk color codes of:

• Blue: #0000ffffffff

• Yellow: #ffffffff9792

• Red: #ffffffff0000 The key can be blocks of the given colors, or
made blended by changing the Color range depiction box, and the
figure labels can include plain text (i.e. unformatted) unit labels.

Once the settings have been chosen, simply draw the key wherever you would like
it. If you click anywhere outside the center of the generated key while the color
key box is open, then it will start to redraw the key. Grabbing the center of the
drawn key will allow it to be repositioned.

Color Keys PDF last generated: October 07, 2021

Analysis Guide User Guide Page 154

Gnuplot Overview
You’ve seen the phrase “Gnuplot is a freely available plotting utility” several times
if you didn’t just skip directly to this section. While Gnuplot is indeed a freely
available plotting utility, it is also a command-line driven tool. It can be used to
generate publishable graphs and charts with minimal effort. Sure, it takes some
time to figure out the syntax, and yes you’ll probably make the same graph 20
time to make it “just so,” but would you rather take that information from one
project and edit a script for the next, or reinvent the wheel each time using Excel?
You’ll take the free command-line tool? Thought so.

Gnuplot’s documentation is very thorough. Information for v5 can be found here .

Gnuplot Overview PDF last generated: October 07, 2021

Analysis Guide User Guide Page 155

http://www.gnuplot.info/
http://www.gnuplot.info/docs_5.0/gnuplot.pdf

Custom Settings at Start-Up
A file titled .gnuplot can be created in your home directory (/home/username)
with settings for Gnuplot to use at startup. If you’re running on a non-Unix-like
system (cough Windows), then this file should be titled GNUPLOT.INI .

Gnuplot has 8 preset line types that it cycles through when generating graphs.
These 8 preset lines are made using colors that are shown to work well for
colorblind people. If you regularly make plots with more than 8 lines, you may wish
to define new line types in the .gnuplot file.

An example .gnuplot file, based on the default but with two additional lines.
Line 9 is salmon-colored and line 10 is lightslategray.

set linetype 1 lc rgb "dark-violet" lw 2 pt 0
set linetype 2 lc rgb "sea-green" lw 2 pt 7
set linetype 3 lc rgb "cyan" lw 2 pt 6 pi -1
set linetype 4 lc rgb "dark-red" lw 2 pt 5 pi -1
set linetype 5 lc rgb "blue" lw 2 pt 8
set linetype 6 lc rgb "dark-orange" lw 2 pt 3
set linetype 7 lc rgb "black" lw 2 pt 11
set linetype 8 lc rgb "goldenrod" lw 2
set linetype 9 lc rgb "#FA8072" lw 4 pt 1
set linetype 10 lc rgb "#778899" lw 4 pt 1
set linetype cycle 10

The first 8 colors in the default (and this example) are set based upon colors that
are readable for people with different types of color blindness. Some good articles
on picking contrasting colors can be found on the somersault18:24 blog and on
J*Fly .

Custom Settings at Start-Up PDF last generated: October 07, 2021

Analysis Guide User Guide Page 156

http://www.somersault1824.com/tips-for-designing-scientific-figures-for-color-blind-readers/
http://jfly.iam.u-tokyo.ac.jp/color/index.html
http://jfly.iam.u-tokyo.ac.jp/color/index.html

Gnuplot Help
Gnuplot has a very in-depth help feature when run interactively. To invoke an
interactive run, just type

$ gnuplot

in the Terminal.

Some useful help commands include:

gnuplot> help
Pulls up the help page for the help command.
gnuplot> show colornames
A list of all 111 defined colors and their associated HEX and r
gb codes are available
gnuplot> help linetype
This shows the defaults linetypes for users without a .gnuplot
file

Gnuplot Help PDF last generated: October 07, 2021

Analysis Guide User Guide Page 157

Input Information
Gnuplot can take an input with a .gnu extension. To run a gnuplot script, do:

$ gnuplot name-of-input.gnu

The first encountered error, if any, will be printed to the Terminal. The script stops
running with the first error, which is why subsequent errors are not reported.

In gnuplot, you need to explicitly set the font encoding to allow for special
characters and symbols, such as Greek letters. The encoding line that has been
used for everything in this guide is the ISO Latin 1 encoding, with the input
command:

set encoding iso_8859_1

While there are lists available on the Internet , some common symbols for graphs
are included in the table below (page 158).

Table: Some symbol codes for ISO encoding

Symbol Name Symbol Gnuplot Symbol Code

Angstrom Å {\305}

Degree ° {\260}

Greek alpha α {/Symbol a}

Greek chi χ {/Symbol c}

Greek zeta ζ {/Symbol z}

Commands in gnuplot can continue across lines when , \ is placed at the line
end. An argument is ended by using a return, or with the semicolon when
following lines that ended with , \ .

Input Information PDF last generated: October 07, 2021

Analysis Guide User Guide Page 158

http://www.ic.unicamp.br/~stolfi/EXPORT/www/ISO-8859-1-Encoding.html

Comments are the same as bash shells and Python, where they’re initiated with
. Comments don’t work very well if you’re commenting in the middle of a plot

command, and it is thus advised that any plot lines you want to comment out are
moved to the place after the semicolon.

Multiple graphs can be created with one input, as seen earlier (page 7).

Setting the Terminal Type
There are two very helpful file types to generate gnuplot images with. These are
postscript and pngcairo. Postscript is used with the .eps extension and is useful in
that it requires minimal formatting–everything is typically scaled appropriately. The
downside of using postscript is that the images are written in a different formatting
language, and they will need to be converted manually to a .png or .pdf using
commands such as:

$ for file in *.eps; do convert $file ${file%.*}-eps-converted-
to.pdf; done
$ for file in *.eps; do convert $file -rotate 90 ${file%.*}.pn
g; done

The postscript file format also doesn’t allow for image transparency.

Using pngcairo (which will likely require an administrator to run sudo apt

install libcairo2-dev) means that the image won’t be scaled right off, but the
resolution will likely be better than a converted .eps . Pngcairo also allows for
image transparency and more advanced coloration features.

Setting the image type is known as setting the output terminal. For postscript, a
line like:

set term postscript enhanced color font "Arial,24";

would set the terminal using an enhanced postscript format (enhanced allows for
better coloration and more difficult line types) with 24 pt Arial font.

For pngcairo, a line like:

set term pngcairo enhanced color font "Arial,24" size 750,525;

Input Information PDF last generated: October 07, 2021

Analysis Guide User Guide Page 159

would set the terminal using an enhanced png format (enhanced allows for better
coloration and more difficult line types) with 24 pt Arial font at a size of 750 x 525
pixels (corresponding to 5 x 3 inches).

Labels, Keys, and Arrows
Axis labels and keys are set with rather straight-forward command types. Each of
the label types in gnuplot also allow for offsetting, which can be especially helpful
for keys. Some examples include:

set xlabel "Shift Degrees ({\260})"
set ylabel "Slide Degrees ({\260})"
set key top left font "Arial,20" width -1 height 1
set key outside right Left reverse width 2 height 1 font "Aria
l,18" maxrows 3

The individual argument structure can be found in the documentation , or by using
the help (page 157) command interactively.

The tic mark labels can also be forcefully set. This trick is helpful for changing
PDB residue numbers to match the actual protein residue numbers. You can use a
mix of both the number and words in the tic marks, too. The bottom x labels are
xtics and the top x labels are x2tics .

set xtics ("Initial" 0, 5, 10, "Next" 20, 45, "Hour" 60, "End"
80) border nomirror out;
set x2tics border nomirror out rotate by 15 ("Heat" 45)
set label 1 "Stir" at 15,25 font ",18"

You can place arrows on your graph at set positions. The important word there is
set–if they’re not positioned in a place that will show up during autoscaling, they
will not be visible. The default arrow includes one arrowhead. That can be
changed to none or both with nohead or heads , respectively.

set arrow 1 from first 16,54.25 to first 17,60.00 lc rgb "#0085
3E"
set arrow 2 from first 1,65.25 to first 1,60.25 lw 1.2 lc rgb
"#00853E"
set arrow 3 from first 334,10 to first 346,10 lw 2 nohead
set arrow 4 from first 334,9 to first 334,11 lw 1 heads

Input Information PDF last generated: October 07, 2021

Analysis Guide User Guide Page 160

http://www.gnuplot.info/docs_5.0/gnuplot.pdf

Once labels are unneeded or unwanted, you can use commands like unset key

and unset arrow 1 to remove them from the plotting area.

Different Graph Styles
There are multiple plot styles afforded by gnuplot. Some examples include plotting
with boxes (useful for EDA plots; w boxes), points (useful for backbone angles; w

points), lines (useful for distances; w lines) and smoothed lines (useful for
almost everything else; w lines s bezier).

An example graph created using Gnuplot.

The following was the script used to create the above image.

Input Information PDF last generated: October 07, 2021

Analysis Guide User Guide Page 161

set encoding iso_8859_1
#set term postscript enhanced color font "Arial,24";
set terminal pngcairo enhanced color font "Arial,24" size 100
0,750;

set xlabel "Value ({\260})"
set ylabel "Value ({\305})"
set xrange [1:80]
set key outside right Left reverse width 2 height 1 font "Aria
l,18" maxrows 3

set xtics ("Start" 0, 20, "Half" 40, 60, "End" 80) border nomir
ror out;
set x2tics border nomirror out rotate by 15 ("Etwas" 55)

set arrow 1 from first 50,400 to first 60,400 lw 2 heads
set label "Hi Mom" at 50,600 font ",18"

set output "test-image.png";
plot "test.dat" u ($1):($2) w boxes t "Boxes" lw 4, \
"test.dat" u ($1):($2) w points t "Points" lw 4, \
"test.dat" u ($1):($2) w lines s bezier t "Lines" lw 4;

Something that’s been danced around a little bit so far is the idea of using
transparent colors with pngcairo. Because of how gnuplot plots information like
someone makes a sandwich (bread, cover the bread with peanut butter, hide the
peanut butter with bananas, hide the bananas with more bread), data sets can be
completely obscured from the seen plot. That’s where transparency comes in!

Colors can be made transparent by adding two characters to the beginning of the
color’s HEX code. These two numbers correspond to the percentage of
transparency. The thought process is flipped for gnuplot, though. If you use what
would be 100%, that means that it’ll be 100% transparent, and not 100% opaque.
The characters to add to the HEX code are based on multiplying the 255 rgb scale
number by the percentage, and then converting that number to hexadecimal.
Lucky for you, I’ve put them in the below table (page 162) for you.

Table: Hexadecimal transparency characters
Where 100% is 100% transparent and 0% transparent has a “00” HEX code.

Input Information PDF last generated: October 07, 2021

Analysis Guide User Guide Page 162

Percentage (%) HEX (%) HEX (%) HEX (%) HEX

100 FF 75 BF 50 80 25 40

95 F2 70 B3 45 73 20 33

90 E6 65 A6 40 66 15 26

85 D9 60 99 35 59 10 1A

80 CC 55 8C 30 4D 5 0D

One working set of commands for incorporating transparency can be seen below.
The box is set to allow transparency, then circles are used. The first thing plotted
is completely opaque, so it’s HEX code starts with 00 . The next thing plotted has
a specified solid fill of 15%, but it also has 20% transparency given by a HEX
value of 33 .

set style fill transparent solid 1.0 noborder
set style circle radius 0.02
plot ... lt rgb "#0000FF7F", \
... lt rgb "#339400D3" fs solid 0.15, \

Different weights and dash or point types can be used through setting lw (line
weight) and either dt (dashtype) or pt (point). Again, gnuplot tends to cycle
through a cycle of predetermined numbers and colors, but you can respecify
anything in the plot command. You can even define dashtypes with any string
containing dots, hyphens, underscores, and spaces (dt “ .. -- __ “). There
are also plenty of point types (something like 75). Some examples of the different
weights, dashes, and points are shown in the following images.

Input Information PDF last generated: October 07, 2021

Analysis Guide User Guide Page 163

Different line weights and dash types.

Input Information PDF last generated: October 07, 2021

Analysis Guide User Guide Page 164

Different point types.

An abbreviated example of the script to generate both graphs would be:

set key bottom right font "Arial,18"

set output "test-line.png";
plot "test-line.dat" u ($1):($2-10) w lines s bezier t "dt 1 l
w 1" lt 1 lw 1 dt 1, \
"test-line.dat" u ($1):($2-8) w lines s bezier t "dt 2 lw 2" l
t 2 lw 2 dt 2;

set key box top left font "Arial,18" width -1 maxrows 6

set output "test-point.png";
plot "test-line.dat" u ($1):($2+40) w points t "pt 1" pt 1 lw
4, \
"test-line.dat" u ($1):($2+43) w points t "pt 2" pt 2 lw 4;

Input Information PDF last generated: October 07, 2021

Analysis Guide User Guide Page 165

	
	
	Table of Contents
	Introduction
	Cpptraj
	cpptraj_strip.in
	cpptraj_analysis.in

	Plotting RMSD, RMSF, and Total Number of Hydrogen Bonds with gnuplot
	rmsd-etc.gnu

	Plotting Averages for RMSD (etc.) using R and gnuplot
	rmagic-rmsd-rmsf-hbond-5.r
	avg-rmsd-etc.gnu

	parmed
	Hydrogen Bond Analysis (HBA)
	Table: Example HBA Table
	HBA Averaging with R
	HBA: the Shell Script
	hbond-analysis.sh

	Correlational Analysis
	Plotting Correlation Matrices with Python
	matrcorr_graph.py
	Modifications to Remove Axis Labels
	Modifications for (0,0) Origin

	Backbone Analysis
	Using 3DNA

	Secondary Structure
	Clustering
	Custom Settings at Start-Up
	Files from the Command Line
	Changing Your System's Orientation
	Labels
	Atoms
	Distances
	Angles
	Dihedrals

	Graphical Representations
	VMD’s Syntax
	Saving/Loading Graphical Representations

	Saving Files
	Generating Images
	Saving a High-Quality Image with Transparency

	Making Movies
	NMA Overview
	Downloading VMD and ProDy
	Loading in the Protein
	Setting Stride
	RMSD Analysis
	RMSD Trajectory Tool
	ProDy Interface
	NMWiz Window
	xmgrace Window

	Plotting Normal Modes with gnuplot
	Determining Normal Modes with Python
	Fast NMA (ft. cpptraj and Python)
	NMA_plot_mult.py
	Reading the .nmd File with Structure in VMD
	Using the Trajectory Tool

	EDA Overview
	EDA Input File
	Locally Running EDA
	EDA PBS Script
	Interactive EDA Submission
	EDA Results Analysis with R for Specific Residues
	rmagic-EDA-avg.r

	EDA Results Analysis with R: Difference of Averaged Systems
	rmagic-EDA-diffs-sysA-sysB.r

	Using gnuplot's Multiplot Feature with Standard Deviations
	Deprecated Python EDA Scripts
	Historic: EDA Results Analysis with awk & Python for Specific Residues
	awk.sh
	coul-vdw.py

	Historic: EDA Results Analysis: Plotting All Residues
	byres-EDA-generation.sh
	coul-vdw-byres.py

	Historic: Plotting By Residue Data in gnuplot
	Historic: EDA Results Analysis: Plotting the Interactions of a Single Residue
	bashbyres.sh
	Historic: Plotting A Single Residue’s Data in gnuplot
	Historic: Plotting a Difference Between 2 Systems at a Single Residue in gnuplot

	Historic: Plotting Side-by-Side Datasets in gnuplot
	Historic: Plotting Side-by-Side Datasets in matplotlib
	Historic: Plotting Multiple Datasets using gnuplot’s Multiplot Feature

	Mapping Data to Structures
	Matrix Correlation Information
	matcor-chimera-numbers.sh

	EDA Plots by Residue
	chimeraprint.sh

	Color Keys
	Gnuplot Overview
	Custom Settings at Start-Up
	Gnuplot Help
	Input Information
	Table: Some symbol codes for ISO encoding
	Setting the Terminal Type
	Labels, Keys, and Arrows
	Different Graph Styles
	Table: Hexadecimal transparency characters

